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a  b  s  t  r  a  c  t

This paper  presents  an  evolutionary  hybrid  algorithm  of  invasive  weed  optimization  (IWO)  merged  with
oppositional  based  learning  to  solve  the  large  scale  economic  load  dispatch  (ELD)  problems.  The  oppo-
sitional  invasive  weed  optimization  (OIWO)  is  based  on  the  colonizing  behavior  of  weed  plants  and
empowered  by  quasi  opposite  numbers.  The  proposed  OIWO  methodology  has  been  developed  to  min-
imize  the  total  generation  cost  by  satisfying  several  constraints  such  as  generation  limits,  load  demand,
valve  point  loading  effect,  multi-fuel  options  and transmission  losses.  The  proposed  algorithm  is  tested
and  validated  using  five  different  test  systems.  The  most  important  merit  of  the  proposed  methodology  is
high accuracy  and  good  convergence  characteristics  and  robustness  to solve  ELD  problems.  The simulation
results  of  the  proposed  OIWO  algorithm  show  its applicability  and  superiority  when  compared  with  the
results  of  other  tested  algorithms  such  as  oppositional  real  coded  chemical  reaction,  shuffled  differential
evolution,  biogeography  based  optimization,  improved  coordinated  aggregation  based  PSO,  quantum-
inspired  particle  swarm  optimization,  hybrid  quantum  mechanics  inspired  particle  swarm  optimization,
modified  shuffled  frog  leaping  algorithm  with  genetic  algorithm,  simulated  annealing  based  optimization
and  estimation  of  distribution  and  differential  evolution  algorithm.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Economic load dispatch (ELD) is one of the power system optimization problems
has high dimensional, high constraints, non-convex, non-smooth and nonlinear
characteristics and requires an efficient optimization technique to be solved. The
modern power systems encounter numerous technical and economical difficul-
ties  under competitive deregulated environment. The ELD problem is usually a sub
problem of unit commitment and also a constrained optimization task. The prime
requirement of ELD is to allocate the optimal generation levels of online gener-
ating units so as to accomplish the load demand at the minimum operating cost
under various system constraints. Over the years, various mathematical program-
ming methods and nature inspired meta-heuristic optimization techniques have
been successfully employed to solve the ELD problems. The conventional methods
include classical calculus method [1], base point and participation factor method,
gradient search method, linear programming [2], nonlinear programming etc. A
dynamic programming (DP) method can solve such problems in different formu-
lations [3]. However, the drawback of the DP is its huge computational overburden
when applied to practical sized ELD problems in stipulated time zones. These numer-
ical  methods require the incremental cost curves to be monotonically increasing or
piece wise linear. However, these methods have difficulties and are not suitable to
address nonlinear and discontinuous characteristics [4] of actual practical problems
rather complicating the problem solutions.

The great attempts of researchers across the globe to overcome the limitations of
conventional mathematical programming are leaded to introduce meta-heuristics
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algorithms like genetic algorithm (GA) [4–6], simulated annealing (SA) [7], evo-
lutionary programming (EP) [8] and hierarchical method [9] may prove to be
very efficient in solving complex power system problems but, these heuristic
methods do not always guarantee the globally optimal solution. In recent years,
differential evolution (DE) [10,11], Ant colony optimization [12], artificial immune
systems (AIS) [13], bacteria foraging optimization [14] modified genetic algorithm
[15,16], modified particle swarm optimization (PSO) [17–21] and biogeography
based optimization (BBO) [25] have been successfully applied to ELD problems.
Quite promising results in terms of fuel cost savings and faster convergence have
been obtained by these techniques.

However, SA algorithm finds the solution trapped by local optimum rather than
at the global optimum. Moreover, tuning of its relevant control parameters is a
difficult task. The recent research has identified few drawbacks of the stochastic
methods like GA of its premature convergence causing degradation in performance
and reduction in its search capability and unsuitable when applied to multimodal
objective functions. The main drawback of SA, GA, EP and AIS, is their slow conver-
gence toward optimal solution, which is not suitable for real time operation. Though
the convergence characteristic of PSO is fast and acceptable when applied to large-
scale real time ELD problems still, the generation schedule obtained is not always
global best solution; rather they often achieve a near global optimal solution.

Within the last few years, new optimization methods with modifications of
existing methods have been applied in order to obtain the global or nearly global
optimal solutions to ELD problems. These modified meta-heuristic algorithms
like, GA based ant colony optimization algorithm [5], Nelder–Mead based BFA
(BFA-NM) [14], modified shuffled frog leaping algorithm with genetic algorithm
(MSFLA& GA) [15], quantum-inspired particle swarm optimization (QPSO) [18],
hybrid quantum mechanics inspired particle swarm optimization (HQPSO) [19],
improved coordinated aggregation based PSO (ICA-PSO) [20], an improved particle
swarm optimization (IPSO) [21], shuffled differential evolution (SDE) [22], DE with
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generators of chaos sequences and sequential quadratic programming (DEC-SQP)
[23], variable scaling hybrid differential evolution (VSHDE) [24], hybrid differen-
tial  evolution with BBO [25] known as (DE/BBO) [26] and oppositional real coded
chemical reaction optimization (ORCCRO) [27] have been successfully applied in
constrained ELD problems. The opposition based learning (OBL) [28] have been
incorporated in chemical reaction optimization to improve the convergence rate
of  the algorithm. However, this ORCCRO algorithm requires a lots of control param-
eters tuning which is a difficult task. The advantages of these algorithms that they do
not  have any or fewer restrictions on the shape of cost function curves or problem
constraints. However, they are quite sensitive to various parameters tuning, their
solution is not unique for each trial run and also the problem of large execution time.

The first application of oppositional based learning and back propagation in neu-
ral  network was proposed by Ventresca and Tizhoosh [29]. Since then, it has been
applied to many soft computing techniques such as DE [30], PSO by Wang et al.
[31], ant colony optimization [32,33], biogeography based optimization [34], gravi-
tational search algorithm [35], harmony search algorithm [36] and teaching learning
based optimization [37]. It has been proved that a quasi opposite number is usually
closer than an opposite number to the solution. This paper utilizes the improved
computational efficiency of quasi opposition based learning concept in the pro-
posed invasive weed optimization algorithm. This evolutionary algorithm known as
invasive weed optimization (IWO), is a more robust, stochastic and derivative free
optimization tool for the solution of complex real world problems. The algorithm
is  based on the invasive habits of growth of weeds in nature and having excel-
lent exploration and exploitation ability in the search area. It was  first developed by
Mehrabian and Lucas [38] and since then, many applications have been found of this
algorithm such as recommender system design [39], antenna system design [40],
state estimation of nonlinear systems [41] and unit commitment problem solution
[42].

Furthermore, oppositional based learning empowers the proposed IWO  algo-
rithm to obtain best solution in lesser time. The proposed algorithm is tested on five
different test systems breaking down the previous best results in all cases. The sim-
ulation results so obtained show its reliability and superiority in solving constrained
ELD problems.

2. Problem formulation

2.1. ELD with smooth cost function

The prime objective of the ELD problem is to determine the most
economic loadings of generators to minimize the generation cost
such that the load demands PD in the scheduling horizon can be met
and simultaneously, the power balance constraint and generating
limit constraints are satisfied. Here, this constrained optimization
problem can be written as:

Minimize FTotal =
d∑

i=1

Fi(Pgi) (1)

In general, the cost function of ith unit Fi(Pgi) is a quadratic
polynomial and is expressed as:

Fi(Pi) = ai + biPi + ciP
2
i (2)

where ai, bi and ci are fuel cost coefficients of ith unit, and d is the
total number of committed units.

(a) Active power balance constraint or demand constraint: The
total generation

∑d
i=1(Pgi) should be equal to the total system

demand PD and total transmission loss PLoss. That is represented
as

d∑
i=1

(Pgi) = PD + PLoss (3)

(b) The generator limits: The power output of each generator
should vary within its minimum and maximum limits. That is,
the following inequality constraint for each generator should
be defined for each generator:

Pgi min ≤ Pgi ≤ Pgi max (4)

Pi is the power output of ith generator and Pgimin, Pgimax are the
minimum and maximum real power output of ith generator.

2.2. ELD with non-smooth cost functions

Practically, the ELD problems are inherently highly non linear
and discontinuous in nature. Moreover, the cost functions have
discontinuities corresponding to the change of fuels and also due
to valve point effects that make the problem multimodal. There-
fore, most of the techniques fail to obtain global solution instead of
quasi-global optimums to power system optimization problems.

2.2.1. Non-smooth cost function with valve point effects
The generators with multiple valve steam turbines possess a

wide variation in the input–output characteristics due to wire
drawing effects. The valve point effect introduces ripples in the
heat rate curves and cannot be represented by the polynomial func-
tion as in (2). Therefore, the accurate cost curve is a combination
of sinusoidal functions and quadratic functions represented by Eq.
(5).

Fi(Pgi) = ai + biPgi + ciPg2
i + |ei × sin(fi × (Pgi min − Pgi))| (5)

where ei, fi are the constants of the ith unit with valve point effects.

2.2.2. Cost function with change of fuels
Generally, the dispatching units are practically supplied with

multi-fuel sources, each unit should be represented with several
piecewise quadratic functions reflecting the effect of fuel type
changes, and the generator must identify the most economic fuel
to burn. The generator with multiple fuel options [9] has different
input–output curve. Therefore, it is more appropriate to represent
the cost functions with piecewise quadratic functions described in
(6).

Fi(Pi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ai1 + bi1Pi + ci1P2
i

if Pi min ≤ Pi ≤ Pi1, fuel − 1

ai2 + bi2Pi + ci2P2
i

if Pi1 ≤ Pi ≤ Pi2, fuel − 2

. . .

. . .

aim + bimPi + cimP2
i

if Pim−1 ≤ Pi ≤ Pi  max, fuel − m

(6)

where aij, bij, cij are cost coefficients of unit i for the jth fuel type
and Pi = Pgi, m = (number of generators).

2.2.3. Cost function with valve point effects and change of fuels
In reality, the objective function of the practical economic dis-

patch problem has non-differentiable points according to valve
point loadings and multiple fuels. Therefore, the objective function
should be composed of a set of non-smooth functions to obtain
an accurate and practical economic dispatch solution. The cost
function is framed by combining both valve point loadings and
multi-fuel options which can be realistically represented as shown
below in (7).

Fi(Pi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ai1 + bi1Pi + ci1P2
i

+ |ei1 × sin(fi1 × (Pi1 min − Pi1))|, for fuel1, Pi1 min ≤ Pi ≤ Pi1

ai2 + bi2Pi + ci2P2
i

+ |ei2 × sin(fi2 × (Pi2 min − Pi2))|, for fuel2, Pi2 min ≤ Pi ≤ Pi2

...
...

...

aim + bimPi + cimP2
i

+ |eim × sin(fim × (Pim min − Pim))|, for fuel.m, Pim min ≤ Pi ≤ Pim

(7)
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