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We consider the Continuous Facility Location Problem (ConFLP). Given a finite set of clients 
C ⊂R

d and a number f ∈ R+, ConFLP consists in opening a set F ′ ⊂R
d of facilities, each 

at cost f , and connecting each client to an open facility. The objective is to minimize 
the costs of opening facilities and connecting clients. We reduce ConFLP to the standard 
Facility Location Problem (FLP), by using the so-called approximate center sets. This 
reduction preserves the approximation, except for an error ε, and implies 1.488 + ε and 
2.04 + ε-approximations when the connection cost is given by the Euclidean distance and 
the squared Euclidean distance, respectively. Moreover, we obtain approximate center sets 
for the case that the connection cost is the αth power of the Euclidean distance, achieving 
approximations for the corresponding problems, for any α ≥ 1. As a byproduct, we also 
obtain a polynomial-time approximation scheme for the k-median problem with this cost 
function, for any fixed k.

© 2016 Published by Elsevier B.V.

1. Introduction

In the Facility Location Problem (FLP), given a set of clients and a set of locations, one must select a subset of locations, 
where to install facilities, and connect each client to an open facility. The objective is to find the solution that minimizes 
the costs of opening facilities, and serving clients. The Continuous FLP (ConFLP) is the variant in which a facility may be 
opened at any point of the Euclidean space, whilst in FLP, the set of possible locations is a given finite set. ConFLP has 
applications in clustering, and is closely related to k-means and k-median problems. Contrary to k-clustering, however, it 
does not impose a number k of clusters; instead, it fixes a penalty f for each created cluster.

The classical FLP is defined as follows. Consider finite sets C and F , that represent clients and facilities, respectively. 
The cost to connect each facility i to each client j is ci j , and the cost to open a facility i is f i . The objective is to find 
a subset F ′ of F such that 

∑
i∈F ′ f i + ∑

j∈C mini∈F ′ ci j is minimum. Hochbaum [17] presented a O (log n)-approximation 
for FLP, that is known to be asymptotically tight unless P = NP, by using a reduction from Set Cover. The so-called metric 
FLP is the particular case in which C ∪ F is a metric space with distance c, i.e., c is symmetric and satisfies the triangle 
inequality. For this case, the best known approximation factor is 1.488 [26], and there is no factor better than 1.463, unless 
NP ⊆ DTIME[nO (log log n)] [13]. For the special case that clients and facilities are in the plane, and c is the Euclidean distance, 
Arora et al. [2] obtained a polynomial-time approximation scheme (PTAS). Kolliopoulos and Rao [23] obtained PTASs when 
points are in the d-dimensional space, for any fixed d.
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When the connection cost function is not metric, there are few works in the literature of FLP. For the variant whose 
connection cost is the square of the Euclidean distance, Jain and Vazirani [21] presented a 9-approximation. This factor 
holds for the more general case in which clients and facilities are in a metric space, and the connection cost is the square 
of the metric function. This variant was studied by Fernandes et al. [11], who gave a 2.04-approximation, and showed that 
this factor is tight unless P = NP [11]. Fernandes et al. also obtained approximations for the case that c is the power of a 
metric function [12].

The continuous FLP is defined as follows. Consider a finite set of points C ⊂R
d , and a number f ∈R+ . A facility 

may be opened at any point of R
d at cost f . The cost to connect a facility i ∈ R

d to a client j ∈ C is given by the 
Euclidean distance between i and j, and is denoted by �2(i, j). The objective is to find a finite set F ′ ⊂ R

d , such that 
|F ′| f + ∑

j∈C mini∈F ′ �2(i, j) is minimum. This problem is denoted by �2-ConFLP. More generally, for α ≥ 1, we denote by 
�α

2 -ConFLP the variant whose connection cost is given by the αth power of the Euclidean distance, �α
2 . Work on ConFLP has 

been done by Meira and Miyazawa [30], who obtained approximations with factors 1.861 + ε and 9 + ε for the �2 and �2
2

cost functions, respectively. Later, Czumaj et al. [7] obtained a PTAS for the special case with �2 cost function and points in 
the plane.

1.1. Other related works

In the k-means problem, given a set P of n points in Rd , the objective is to choose a set K ⊂ R
d of k cluster centers, 

such that the sum of the squared Euclidean distance from every point to its nearest center is minimized. The clustering 
obtained from k-means is the Voronoi partition of P with respect to K . Lloyd’s algorithm [27] is a largely used heuristic 
to solve k-means. Although it has no guarantee of either execution time nor solution quality, it has been proved useful 
in practice. The k-means problem is NP-hard, even if k, or d is a fixed constant [8,28]. Inaba et al. [18] showed that the 
number of Voronoi partitions induced by k points in Rd is ndk , and therefore k-means can be solved exactly in O (ndk+1). 
Faster algorithms for k-means are given as polynomial-time approximation schemes when both k and d are fixed [29,16], 
and when k is fixed but d is part of the instance [9,25,6,10]. When both d and k are part of the instance, Kanungo et al. [22]
used a local search to give a 9 + ε-approximation.

The k-median problem is similar to k-means, but the cost to connect two points is the standard Euclidean distance. 
For this problem there exist polynomial-time approximation schemes for the case that k and d are fixed [2,23,16], and for 
the case that d is part of the input [25,6]. When k is part of the input and d = �(log n), obtaining a PTAS to k-median is 
NP-hard [14]. The metric k-median problem is a widely studied variant in which the sets of clients and candidate centers are 
elements of a metric space. This problem is known to be 1.736-hard to approximate, unless NP ⊆ DTIME[nO (log log n)] [19], 
and currently the best approximation is due to Byrka et al. [5] and has factor 2.611.

In the approximation schemes for k-means, Matousek [29] used the concept of approximate centroid sets. The term 
centroid comes from the fact that the optimal center of a given cluster is given by the centroid of its points. The idea is to 
obtain a set of candidate centers, an approximate center set, that contains a subset of k centers that is an approximate solution 
for the optimal k-means clustering. Matousek gave ε-approximate center sets of size nε−1 log(1/ε). Other constructions of 
center sets have sizes kε−2d log n log 1/ε [16] and, independent of n, k3ε−(2d+2) log 1/ε [15]. Also, center sets independent 
of d with size n1/ε are implicitly given by Inaba et al. [18]. For k-median, there are approximate center sets with size 
k2ε−2d log2 n [16].

Kumar et al. [25] formalized the existence of a random sampling procedure for certain k-clustering problems, and used 
a superset sampling algorithm to obtain linear-time approximations algorithms for k-means and k-median problems. The 
idea is that, for certain clustering problems, one may obtain, with constant probability, an approximate center set from a 
given set of points using only a constant-size subset. Ackermann et al. [1] extended the algorithm of Kumar et al., using a 
combinatorial analysis, and avoiding the need of a triangle inequality, therefore obtaining linear-time approximation schemes 
for k-clustering problems with different cost functions, such as Kullback–Leibler divergence and Mahalanobis distances.

1.2. Our contribution

In this work, we solve ConFLP problems using approximate center sets for its set of clients, and solving the dis-
crete version of the problem. This reduction leads to approximations for ConFLP problems, provided that there exists a 
procedure to create ε-approximate center sets for the considered connection cost function, and that there exists an approx-
imation algorithm for the corresponding discrete facility location problem. Using this reduction, we obtain 1.488 + ε and 
2.04 + ε-approximations for the �2 and �2

2 cost functions when d is part of the input, respectively, and a PTAS for the �2
cost function for fixed d.

A natural way to solve �2-ConFLP and �2
2-ConFLP is to execute the corresponding discrete k-clustering problems on 

the metric for all values of k. Such approach cannot improve the approximation factors, as there is a lower bound on 
the approximation factor of 1.735 for metric k-median [19], and a lower bound of 3.943 for squared metric k-median 
(Subsection 3.3).

We also obtain ε-approximate center sets of polynomial size for the more general �α
2 cost function, thus obtaining 

approximation algorithms for the corresponding ConFLP problems, for any α ≥ 1. Using such center sets, we also obtain a 
PTAS for the k-clustering problems with �α

2 cost function, for fixed k.
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