Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Theoretical Computer Science

www.elsevier.com/locate/tcs

The minimal Laplacian spectral radius of trees with diameter $4^{\frac{1}{\kappa}}$

Haixia Zhang ^a*,*b*,*∗, Yi Wang ^a

^a *School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China*

^b *Department of Mathematics, Taiyuan University of Science and Technology, Taiyuan 030024, China*

A R T I C L E I N F O A B S T R A C T

Article history: Received 12 September 2014 Received in revised form 30 March 2016 Accepted 6 October 2016 Available online 24 October 2016 Communicated by J. Kratochvil

MSC: 05C50 15A18

Keywords: Tree Laplacian spectral radius Diameter

1. Introduction

Throughout this paper all graphs considered are finite, connected and simple. Graph theoretical terms used but not defined can be found in [\[1\].](#page--1-0)

Let $G = (V, E)$ be a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set E. For $v \in V$, let $d(v)$ denote the degree of v and *N(v)* denote the set of all neighbors of *v*. The diameter of *G* is the maximum distance between any two vertices of G. The Laplacian matrix of G is $L(G) = D(G) - A(G)$, where $D(G) = diag(d(v_1),...,d(v_n))$ is the degree diagonal matrix of *G* and *A(G)* is the adjacency matrix of *G*. It is well known that *L(G)* is positive semidefinite and singular. Its eigenvalues can be arranged as $\mu_1(G) \geq \cdots \geq \mu_n(G) = 0$. The largest eigenvalue $\mu_1(G)$ is called the Laplacian spectral radius of G. Recent researches show that the Laplacian spectral radius of trees plays an important role in theoretical chemistry [\[2,3\].](#page--1-0)

Let $\mathcal{T}_{n,d}$ be the set of trees on *n* vertices with diameter *d*. Guo [\[4\]](#page--1-0) determined the first $\frac{d}{2} + 1$ Laplacian spectral radii of trees in the set $\mathcal{T}_{n,d}$ for $3 \leq d \leq n-3$. Liu et al. [\[5\]](#page--1-0) characterized trees with the minimal Laplacian spectral radii in the set $\mathcal{T}_{n,d}$, where $d \in \{1,2,3,n-3,n-2,n-1\}$, they also considered the case $d = 4$ and proposed [Conjecture 1](#page-1-0) on the basis of a computer simulation.

<http://dx.doi.org/10.1016/j.tcs.2016.10.002> 0304-3975/© 2016 Elsevier B.V. All rights reserved.

We determine the trees with the minimal Laplacian spectral radius with diameter 4, which settles a conjecture posed by Liu et al. (2009) [\[5\].](#page--1-0)

© 2016 Elsevier B.V. All rights reserved.

Note

Supported by NSFC (No. 11371078).

^{*} Corresponding author. Correspondence to: Department of Mathematics, Taiyuan University of Science and Technology, Taiyuan 030024, China. *E-mail addresses:* zhanghaixiass@hotmail.com (H. Zhang), wangyi@dlut.edu.cn (Y. Wang). *URL:* <http://www.elsevier.com> (Y. Wang).

Fig. 1. $T^*(7, 2)$ and $T^*(7, 3)$.

For any tree $T \in \mathcal{T}_{n,4}$, *T* must be obtained from a path $P_5 : v_1v_2v_3v_4v_5$ by attaching some pendant edges to v_2 , v_4 , and some pendant edges or some stars to v_3 , where the centers of stars are adjacent to v_3 . It is clear that the vertex v_3 is the center of the tree *T* .

Let n, k be integers with $2 \le k \le n-3$. Let $T^*(n,k)$ be the tree on n vertices obtained from the star $K_{1,k}$ by attaching d_i pendant edges to the ith leave u_i of $K_{1,k}$ for $i=1,\ldots,k$, where $\sum_{i=1}^k d_i = n-k-1$ and $|d_i - d_j| \le 1$ for all $1 \le i < j \le k$. Clearly, $T^*(n, k) \in \mathcal{T}_{n, 4}$.

For $n \geq 2$, let

$$
M_n=\frac{\sqrt{4(n-1)-1}+1}{2}, N_n=\frac{\sqrt{4(n-1)+1}-1}{2}.
$$

[Conjecture](#page--1-0) 1 ([5, Conjecture 11]). For any $T \in \mathcal{T}_{n,4}$, we have

$$
\mu_1(T) \geq \mu_1(T^*(n, \lfloor M_n \rfloor)),
$$

with the equality if and only if $T \cong T^*(n, |M_n|)$ *.*

This conjecture is inaccurate in general. We give an example for the case $n = 7$, then $M_7 \approx 2.9$. However, trees $T^*(7,2)$ and $T^*(7,3)$, shown in Fig. 1, have the same Laplacian spectral radii: $\mu_1(T^*(7,2)) = \mu_1(T^*(7,3)) = 3 + \sqrt{2}$.

In this paper, we modify the conjecture above by replacing $[M_n]$ with $[N_n]$. (In fact, it is not difficult to verify that $[M_n] = [N_n]$.) Furthermore, we give a theoretical proof of the following theorem.

Theorem 2. For any $T \in \mathcal{T}_{n,4}$, we have

$$
\mu_1(T) \ge \mu_1(T^*(n, \lceil N_n \rceil)).
$$

The equality holds if and only if $T \cong T^*(n, [N_n])$, or $T \cong T^*(n, [N_n] + 1)$ when $N_n \in \mathbb{N}$.

2. Proof of Theorem 2

To prove Theorem 2, we first review some relevant results. Let $X = (x_1, \ldots, x_n)^T$ is an eigenvector of *G* corresponding to μ_1 (*G*). For each vertex of *G*,

$$
(d(u) - \mu_1(G))x_u = \sum_{v \in N(u)} x_v,
$$
\n(1)

where x_u denotes the component x_i of x if u stands for the vertex v_i of G .

Lemma 1 ([6, p. [220\]\)](#page--1-0). Let G be a bipartite graph. Then Q(G) and L(G) are unitarily similar, where Q(G) = $D(G) + A(G)$ is the *signless Laplacian matrix of G. In particular,* $\mu_1(G)$ *is simple.*

Lemma 2 ([7, [p.149\]\)](#page--1-0). Let G be a graph with at least one edge, $\Delta(G)$ be its maximal degree, then $\mu_1(G) \geq \Delta(G) + 1$. Moreover, if G is *connected, the equality holds if and only if* $\Delta(G) = n - 1$ *.*

[Lemma](#page--1-0) 3 ([8, Lemma 2.9]). Let G be a graph and τ be an automorphism of G. If $\mu_1(G)$ is a simple eigenvalue of L(G) and X is an eigenvector corresponding to $\mu_1(G)$, then $|x_v| = |x_{\tau(v)}|$ for every $v \in V(G)$.

The following result is direct but useful.

Lemma 4. Let $f(x)$ and $g(x)$ be two real polynomials with positive leading coefficients. If $f(x) > g(x)$ for $x \ge \mu_1(g(x))$, then $\mu_1(f(x)) < \mu_1(g(x))$, where $\mu_1(f(x))$, $\mu_1(g(x))$ is the largest real zero of $f(x)$, $g(x)$, respectively.

In the tree $T^*(n,k)$, denote $a=\max_{1\leq j\leq k}\{d_j\}$ and $i=|\{j|d_j=a, 1\leq j\leq k\}|$. Clearly, $a=\left\lceil\frac{n-k-1}{k}\right\rceil$ and $n=1+ka+i$. We may assume that the vertex u_1, \ldots, u_i and u_{i+1}, \ldots, u_k has a and $a-1$ pendant edges, respectively. Let $v_{i,1}, \ldots, v_{i,a}$ be pendant vertices adjacent to the vertex u_j , $j = 1, ..., i$, and $v_{j,1}, ..., v_{j,a-1}$ adjacent to the vertex u_j , $j = i + 1, ..., k$.

Download English Version:

<https://daneshyari.com/en/article/4952369>

Download Persian Version:

<https://daneshyari.com/article/4952369>

[Daneshyari.com](https://daneshyari.com)