Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note The minimal Laplacian spectral radius of trees with diameter $4^{\frac{1}{2}}$

Haixia Zhang^{a,b,*}, Yi Wang^a

^a School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
 ^b Department of Mathematics, Taiyuan University of Science and Technology, Taiyuan 030024, China

ARTICLE INFO

Received in revised form 30 March 2016

Received 12 September 2014

Accepted 6 October 2016 Available online 24 October 2016 Communicated by J. Kratochvil ABSTRACT

We determine the trees with the minimal Laplacian spectral radius with diameter 4, which settles a conjecture posed by Liu et al. (2009) [5].

© 2016 Elsevier B.V. All rights reserved.

05C50 15A18 Keywords:

Article history:

MSC:

Tree Laplacian spectral radius Diameter

1. Introduction

Throughout this paper all graphs considered are finite, connected and simple. Graph theoretical terms used but not defined can be found in [1].

Let G = (V, E) be a graph with vertex set $V = \{v_1, ..., v_n\}$ and edge set E. For $v \in V$, let d(v) denote the degree of v and N(v) denote the set of all neighbors of v. The diameter of G is the maximum distance between any two vertices of G. The Laplacian matrix of G is L(G) = D(G) - A(G), where $D(G) = \text{diag}(d(v_1), ..., d(v_n))$ is the degree diagonal matrix of G and A(G) is the adjacency matrix of G. It is well known that L(G) is positive semidefinite and singular. Its eigenvalues can be arranged as $\mu_1(G) \ge \cdots \ge \mu_n(G) = 0$. The largest eigenvalue $\mu_1(G)$ is called the Laplacian spectral radius of G. Recent researches show that the Laplacian spectral radius of trees plays an important role in theoretical chemistry [2,3].

Let $\mathcal{T}_{n,d}$ be the set of trees on n vertices with diameter d. Guo [4] determined the first $\lfloor d/2 \rfloor + 1$ Laplacian spectral radii of trees in the set $\mathcal{T}_{n,d}$ for $3 \le d \le n-3$. Liu et al. [5] characterized trees with the minimal Laplacian spectral radii in the set $\mathcal{T}_{n,d}$, where $d \in \{1, 2, 3, n-3, n-2, n-1\}$, they also considered the case d = 4 and proposed Conjecture 1 on the basis of a computer simulation.

[☆] Supported by NSFC (No. 11371078).

^{*} Corresponding author. Correspondence to: Department of Mathematics, Taiyuan University of Science and Technology, Taiyuan 030024, China. *E-mail addresses: zhanghaixiass@hotmail.com* (H. Zhang), wangyi@dlut.edu.cn (Y. Wang). *URL:* http://www.elsevier.com (Y. Wang).

Fig. 1. $T^*(7, 2)$ and $T^*(7, 3)$.

For any tree $T \in \mathcal{T}_{n,4}$, T must be obtained from a path $P_5 : v_1 v_2 v_3 v_4 v_5$ by attaching some pendant edges to v_2, v_4 , and some pendant edges or some stars to v_3 , where the centers of stars are adjacent to v_3 . It is clear that the vertex v_3 is the center of the tree T.

Let n, k be integers with $2 \le k \le n-3$. Let $T^*(n, k)$ be the tree on n vertices obtained from the star $K_{1,k}$ by attaching d_i pendant edges to the *i*th leave u_i of $K_{1,k}$ for i = 1, ..., k, where $\sum_{i=1}^k d_i = n-k-1$ and $|d_i - d_j| \le 1$ for all $1 \le i < j \le k$. Clearly, $T^*(n, k) \in \mathcal{T}_{n,4}$.

For $n \ge 2$, let

$$M_n = \frac{\sqrt{4(n-1)-1}+1}{2}, N_n = \frac{\sqrt{4(n-1)+1}-1}{2}.$$

Conjecture 1 ([5, Conjecture 11]). For any $T \in \mathcal{T}_{n,4}$, we have

$$\mu_1(T) \ge \mu_1(T^*(n, \lfloor M_n \rfloor)),$$

with the equality if and only if $T \cong T^*(n, \lfloor M_n \rfloor)$.

This conjecture is inaccurate in general. We give an example for the case n = 7, then $M_7 \approx 2.9$. However, trees $T^*(7, 2)$ and $T^*(7, 3)$, shown in Fig. 1, have the same Laplacian spectral radii: $\mu_1(T^*(7, 2)) = \mu_1(T^*(7, 3)) = 3 + \sqrt{2}$.

In this paper, we modify the conjecture above by replacing $\lfloor M_n \rfloor$ with $\lceil N_n \rceil$. (In fact, it is not difficult to verify that $\lfloor M_n \rfloor = \lceil N_n \rceil$.) Furthermore, we give a theoretical proof of the following theorem.

Theorem 2. For any $T \in \mathcal{T}_{n,4}$, we have

$$\mu_1(T) \ge \mu_1(T^*(n, \lceil N_n \rceil)).$$

The equality holds if and only if $T \cong T^*(n, \lceil N_n \rceil)$, or $T \cong T^*(n, \lceil N_n \rceil + 1)$ when $N_n \in \mathbb{N}$.

2. Proof of Theorem 2

To prove Theorem 2, we first review some relevant results. Let $X = (x_1, ..., x_n)^T$ is an eigenvector of *G* corresponding to $\mu_1(G)$. For each vertex of *G*,

$$(d(u) - \mu_1(G))x_u = \sum_{v \in N(u)} x_v,$$
(1)

where x_u denotes the component x_i of x if u stands for the vertex v_i of G.

Lemma 1 ([6, p. 220]). Let G be a bipartite graph. Then Q(G) and L(G) are unitarily similar, where Q(G) = D(G) + A(G) is the signless Laplacian matrix of G. In particular, $\mu_1(G)$ is simple.

Lemma 2 ([7, p.149]). Let G be a graph with at least one edge, $\Delta(G)$ be its maximal degree, then $\mu_1(G) \ge \Delta(G) + 1$. Moreover, if G is connected, the equality holds if and only if $\Delta(G) = n - 1$.

Lemma 3 ([8, Lemma 2.9]). Let G be a graph and τ be an automorphism of G. If $\mu_1(G)$ is a simple eigenvalue of L(G) and X is an eigenvector corresponding to $\mu_1(G)$, then $|x_{\nu}| = |x_{\tau}(\nu)|$ for every $\nu \in V(G)$.

The following result is direct but useful.

Lemma 4. Let f(x) and g(x) be two real polynomials with positive leading coefficients. If f(x) > g(x) for $x \ge \mu_1(g(x))$, then $\mu_1(f(x)) < \mu_1(g(x))$, where $\mu_1(f(x)), \mu_1(g(x))$ is the largest real zero of f(x), g(x), respectively.

In the tree $T^*(n, k)$, denote $a = \max_{1 \le j \le k} \{d_j\}$ and $i = |\{j|d_j = a, 1 \le j \le k\}|$. Clearly, $a = \left\lceil \frac{n-k-1}{k} \right\rceil$ and n = 1 + ka + i. We may assume that the vertex u_1, \ldots, u_i and u_{i+1}, \ldots, u_k has a and a - 1 pendant edges, respectively. Let $v_{j,1}, \ldots, v_{j,a}$ be pendant vertices adjacent to the vertex u_j , $j = 1, \ldots, i$, and $v_{j,1}, \ldots, v_{j,a-1}$ adjacent to the vertex u_j , $j = i + 1, \ldots, k$. Download English Version:

https://daneshyari.com/en/article/4952369

Download Persian Version:

https://daneshyari.com/article/4952369

Daneshyari.com