
JID:TCS AID:10582 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.170; Prn:5/01/2016; 9:52] P.1 (1-19)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Succinctness and tractability of closure operator 

representations

Sebastian Rudolph

Technische Universität Dresden, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 April 2015
Received in revised form 12 December 2015
Accepted 20 December 2015
Available online xxxx

Keywords:
Closure operators
Formal contexts
Implications
Tractability
Succinctness
Computational properties

It is widely known that closure operators on finite sets can be represented by sets of 
implications (also known as inclusion dependencies) as well as by formal contexts. In this 
article, we consider these two representation types, as well as generalizations of them: 
extended implication sets and context families. We discuss the mutual succinctness of 
these four representations and the tractability of certain operations used to compare and 
modify closure operators.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Closure operators and closure systems are a basic notion in algebra and occur in various computer science scenarios such 
as logic programming or databases. One central task when dealing with closure operators algorithmically is to represent 
them in a succinct way while still allowing for their efficient computational usage. Formal concept analysis (FCA) naturally 
provides two complementary ways of representing closure operators: by means of formal contexts on one side and implication 
sets on the other. Although being complementary, these two representations share the property that they allow for tractable 
closure computation. In fact, this property is also exhibited by further representation types, which properly generalize the 
ones mentioned above: context families consist of several contexts and the closure is specified as the “simultaneous fixpoint” 
of all the separate contexts’ closures; extended implications are implications where auxiliary elements are allowed.

For a given closure operator, the space needed to represent it in one or the other way may differ significantly: it is 
well known that there are closure operators whose minimal implicational representation is exponentially larger than their 
minimal contextual one and vice versa (see Section 3).

Thus, when designing algorithms which use and manipulate closure operators (as many FCA algorithms do) it is impor-
tant to know which of the possible representation types allow for efficient storage and still guarantee fast (that is: PTime) 
execution of typical computations.

This paper investigates the four representation types in this respect. To this end, we will consolidate known results from 
diverse areas into one framework and provide some findings which are – to the best of our knowledge – novel and original 
to fill the remaining gaps. Our main results can be generalized as follows:

E-mail address: sebastian.rudolph@tu-dresden.de.

http://dx.doi.org/10.1016/j.tcs.2015.12.028
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.12.028
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:sebastian.rudolph@tu-dresden.de
http://dx.doi.org/10.1016/j.tcs.2015.12.028


JID:TCS AID:10582 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.170; Prn:5/01/2016; 9:52] P.2 (1-19)

2 S. Rudolph / Theoretical Computer Science ••• (••••) •••–•••

• We show that context families allow for succinct representation of both contexts and implications, and that extended 
implication sets can succinctly represent all the three other representation types. We also show that a succinct trans-
lation (i.e., one where the size of the result is polynomially bounded by the input) in all other directions is not 
possible.

• We clarify the complexities for comparing closure operators in different representations in terms of whether one is a 
refinement of the other. Interestingly, some of the investigated comparison tasks are tractable (i.e., time-polynomial), 
others are not (assuming P �= NP). We provide algorithms for the tractable cases and coNP-hardness arguments for the 
others.

• We go through standard manipulation tasks for closure operators (refinement by adding a closed set, coarsening through 
an implication, projection, meet and join in the lattice of closure operators) and clarify which are tractable and which 
are not.

This paper is a significantly refined and extended version of two precursor publications [26,27]. All statements for which 
proofs are given are original to the best of our knowledge, unless explicitly stated otherwise.

2. Preliminaries

We start providing a condensed overview of the notions used in this paper. After recalling some complexity notations, 
we introduce closure operators as well as the four representation types we want to discuss in this article: (formal) contexts, 
context families, implication sets and extended implication sets.

2.1. Complexity notations

In order to asymptotically compare sizes of data structures, we will make use of the Bachmann–Landau notation. In 
particular, we remind the reader that for two infinite sequences (an)n∈N and (bn)n∈N , we write

• an ∈ �(bn) if bn is an asymptotic lower bound of an , i.e., there exists some k with an ≥ k · bn for sufficiently large n, and
• an ∈ �(bn) if bn is an asymptotic lower and upper bound of an , i.e., there exist some k1 and k2 with k1 ·bn > an > k2 ·bn

for sufficiently large n.

2.2. Closure operators

We now introduce and formally define the central notion of this paper: closure operators.

Definition 1. Let M be an arbitrary set. A function ϕ : 2M → 2M is called a closure operator on M if it is

1. extensive, i.e., A ⊆ ϕ(A) for all A ⊆ M ,
2. monotone, i.e., A ⊆ B implies ϕ(A) ⊆ ϕ(B) for all A, B ⊆ M , and
3. idempotent, i.e., ϕ(ϕ(A)) = ϕ(A) for all A ⊆ M .

A set A ⊆ M is called closed (or ϕ-closed in case of ambiguity), if ϕ(A) = A. The set of all closed sets {A | A = ϕ(A) ⊆ M} is 
called closure system of ϕ .

It is easy to show that for an arbitrary closure system S , the corresponding closure operator ϕ can be reconstructed by

ϕ(A) =
⋂

B∈S, A⊆B

B.

Hence, there is a one-to-one correspondence between a closure operator and the according closure system.
In the following, we provide some closure operators which will serve as running examples in the course of the paper.

Example 2. Considering M = {a, b, c, d, e}, the functions α, β , γ , and δ defined in the below table are all closure opera-
tors (due to extensivity, every closure operator ϕ satisfies A ⊆ ϕ(A), thus for better readability, we underline elements of 
ϕ(A) \ A).



Download English Version:

https://daneshyari.com/en/article/4952378

Download Persian Version:

https://daneshyari.com/article/4952378

Daneshyari.com

https://daneshyari.com/en/article/4952378
https://daneshyari.com/article/4952378
https://daneshyari.com

