
JID:TCS AID:10939 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.190; Prn:6/10/2016; 15:47] P.1 (1-16)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On deciding synchronizability for asynchronously

communicating systems ✩

Samik Basu a,∗, Tevfik Bultan b

a Iowa State University, United States
b University of California at Santa Barbara, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 August 2015
Received in revised form 4 August 2016
Accepted 26 September 2016
Available online xxxx
Communicated by P. Aziz Abdulla

Keywords:
Asynchronous systems
Message-passing systems
Synchronizability
Verification

Asynchronously communicating systems involve peers or entities that communicate by
exchanging messages via buffers. In general, the size of such buffers is not known
apriori, i.e., they are considered to be unbounded. As a result, models of asynchronously
communicating systems typically exhibit infinite state spaces and it is well-known that
reachability and boundedness problems for such models are undecidable. This, in turn,
makes automatic verification of asynchronous systems undecidable as well. We discuss a
particular class of asynchronous systems over peers for which the interaction behaviors
do not change when the peers are made to communicate synchronously. Such systems are
referred to as Synchronizable. Automatic verification of synchronizable systems is decidable
as the verification of the system can be performed using its synchronous counterpart.
Recently, we have proved that checking whether or not a system is synchronizable is
decidable. In this paper, we consider different types of asynchronous communication,
where the type is described in terms of the nature of buffering and the number of buffers,
and discuss how/if synchronizability is decidable for each type. The new results subsume
the existing ones and present a comprehensive synchronizability study of asynchronous
systems.

© 2016 Published by Elsevier B.V.

1. Introduction

With the increasing use of software systems in distributed settings, dependability of distributed systems has remained
one of the crucial problems in computing. A distributed system with many components coordinates their executions in order
to achieve a desired objective. One emerging paradigm to realize such coordination is based on message-based interaction.
In this setting, the components (we refer to them as peers) interact by exchanging (sending and receiving) messages and
coordinate their activities/execution [1–6].

Due to the distributed nature of the system, the exchange of messages does not occur in a lock-step fashion. That is,
a message sent by a peer is not immediately consumed by the receiving peer owing to delays in the communication net-
work. In other words, the sender and the receiver are not always in sync—the system resulting from the communication is
called asynchronous system. The model of such asynchrony involves buffers—messages sent by the sender are stored in the

✩ This work was supported by the National Science Foundation, under grant CCF1116836.

* Corresponding author.
E-mail addresses: sbasu@iastate.edu (S. Basu), bultan@cs.ucsb.edu (T. Bultan).

http://dx.doi.org/10.1016/j.tcs.2016.09.023
0304-3975/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.tcs.2016.09.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:sbasu@iastate.edu
mailto:bultan@cs.ucsb.edu
http://dx.doi.org/10.1016/j.tcs.2016.09.023

JID:TCS AID:10939 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.190; Prn:6/10/2016; 15:47] P.2 (1-16)

2 S. Basu, T. Bultan / Theoretical Computer Science ••• (••••) •••–•••

buffers and messages consumed by the receivers are removed from the buffers. The capacity of the buffer is assumed to
be unbounded to capture any and all possible delays that can incur between the sending of the message and its consump-
tion. The unboundedness in the capacity results in models of asynchronous system that exhibit infinite state-space and, in
fact, such systems can simulate Turing Machines [7]. This renders their automatic verification, that relies on state-space
exploration, undecidable, in general.

As a result, a number of techniques have been developed to identify different subclasses of asynchronous systems for
which automatic verification is decidable and tractable (e.g., [8,9]). One such class considered in [10,11] is referred to as
the synchronizable systems. An asynchronous system over peers is said to be synchronizable if and only if any behavior
exhibited by the asynchronous system with unbounded buffers can be exhibited by the same peers when communicating
synchronously (i.e., with no buffers). In synchronous systems, the state-space is finitely bounded (by the product of the
number of states of each peers) and, therefore, automatic verification of synchronous systems can be performed efficiently.
In other words, automatic verification of an asynchronous system, that is synchronizable, can be performed by verifying its
synchronous variant.

The question remains: “Is synchronizability checking decidable?”. In [12,13], we proved that synchronizability checking is
decidable for asynchronous systems where (a) each receiver peer has a buffer, and (b) each buffer acts as a queue (FIFO).

We consider the behavior of the systems in terms of sequences of sends, which can be viewed as the observable be-
havior of a system. The consumption of messages (receives) is typically viewed as local to the receiving peers and is not
considered observable. The choice for focusing on the sequences of send actions stems from the fact in distributed systems
such as Web services, the consumption of messages (receives) is typically viewed as local to the receiving services and is
considered unobservable. Furthermore, the desired behaviors of the services are often described in terms of the messages
being exchanged (sent) by the participating peers/services [14]. Similar, specifications describe the desired interactions in
Singularity OS communication contracts [15] and UBF(B) communication contracts in distributed Erlang programs [16].

We have proved that an asynchronous system (denoted by I) over a given set of peers described as finite-state machines
is synchronizable if and only if the sequences of sends in the corresponding synchronous system (denoted by I0), where
peers communicate synchronously, are identical to that in the 1-bounded asynchronous system (denoted by I1), where
peers communicated asynchronously via buffers of capacity 1. Given that both I0 and I1 exhibit behavior with finite-state
space, verifying whether or not they have the same set of send-sequences can be performed automatically, which, in turn,
makes synchronizability checking decidable.

As a simple example, consider three peers as follows:

• P1 has one state s0 with two loops: one over send action a and other over receive action b.

• P2 has one state t0 with two loops: one over receive action a and the other over send action b.

• P3 has two states r0 and r1. It has a transition from r0 to r1 on receive action a and a transition from r1 to r0 on send
action b.

Assume that the start states of each peer are subscripted by 0. Consider that the synchronous communication between P1
and P2 results in I0. In I0, every time P1 sends message a by executing !a, P2 is ready to consume it synchronously (in
lock-step) by executing ?a; similarly, every time P2 sends message b, it can be immediately consumed by P1. As a result
of synchronous interactions, the sequence of sends will be any ordering of a’s and b’s. The same sequences are also present
in their 1-bounded asynchronous system I1—where the sent messages are not necessarily immediately consumed; instead
the messages are stored in a buffer of size 1. Therefore, based on [12], the asynchronous system resulting from P1 and P2
is synchronizable.

On the other hand, the synchronous communication between P1 and P3 results in sending of a, which is immediately
consumed by P3 and is followed by sending of b by P3, which, in turn, is consumed synchronously by P1. The resultant
sequence of sends is ababab However, the 1-bounded asynchronous system involving the interaction between the same

Download	English	Version:

https://daneshyari.com/en/article/4952401

Download	Persian	Version:

https://daneshyari.com/article/4952401

Daneshyari.com

https://daneshyari.com/en/article/4952401
https://daneshyari.com/article/4952401
https://daneshyari.com/

