Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Algorithm on rainbow connection for maximal outerplanar graphs $\stackrel{\mbox{\tiny{\sc b}}}{\sim}$

Xingchao Deng^{a,*}, Hengzhe Li^b, Guiying Yan^c

^a College of Mathematics, Tian Jin Normal University, Tianjin City, 300071, PR China

^b College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, PR China

 $^{\rm c}$ Academy of Mathematics and Systems Science, CAS, Beijing 100190, PR China

ARTICLE INFO

Article history: Received 7 May 2016 Received in revised form 7 August 2016 Accepted 24 August 2016 Available online 5 September 2016 Communicated by D.-Z. Du

Keywords: Rainbow connection number Maximal outerplanar graph Diameter Algorithm

ABSTRACT

In this paper, we consider rainbow connection number of maximal outerplanar graphs (MOPs) on algorithmic aspect. For the (MOP) *G*, we give sufficient conditions to guarantee that rc(G) = diam(G). Moreover, we produce the graph with given diameter *D* and give their rainbow coloring in linear time. X. Deng et al. [4] give a polynomial time algorithm to compute the rainbow connection number of MOPs by the Maximal fan partition method, but only obtain a compact upper bound. J. Lauri [11] proved that, for chordal outerplanar graphs given an edge-coloring, to verify whether it is rainbow connected is NP-complete under the coloring, it is so for MOPs. Therefore we construct Central-cut-spine of MOP *G*, by which we design an algorithm to give a rainbow edge coloring with at most 2rad(G) + 2 + c, $0 \le c \le rad(G) - 2$ colors in polynomial time.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered are finite, simple and connected in this paper. Notations and terminologies not defined here, see West [18]. The concept of rainbow conception was introduced by Chartrand, Johns, McKeon and Zhang in 2008 [9]. Let *G* be a nontrivial finite simple connected graph on which is assigned a coloring $c : E(G) \rightarrow \{1, 2, \dots, n\}$, $n \in \mathbb{N}$, where adjacent edges may have same color. A rainbow path in *G* is a path with different colors on it. If for any two vertices of *G*, there is a rainbow path connecting them, then *G* is called rainbow connected and *c* is called a rainbow coloring. Obviously, any graph *G* has a trivial rainbow coloring by coloring each edge with different colors. Chartrand et al. [9] defined the rainbow connection number rc(G) of graph *G* as the smallest number of colors needed to make *G* rainbow connected. For any two vertices *u* and *v* in *G*, the length of a shortest path between them is their distance, denoted by d(u, v). The eccentricity of a vertex *v* is $ecc(v) := max_{x \in V(G)}d(v, x)$. The diameter of *G* is $diam(G) := max_{x \in V(G)}ecc(x)$. The radius of *G* is $rad(G) := min_{x \in V(G)}ecc(x)$. Distance between a vertex *v* and a set $S \subseteq V(G)$ is $d(v, S) := min_{x \in S}d(v, x)$. The k-step open neighborhood of a set $S \subseteq V(G)$ is $N_k(S) := \{x \in V(G)|d(x, S) = k\}$, $k \in \{0, 1, 2, \ldots\}$. The degree of a vertex *v* is $degree(v) := |N_1(v)|$. The maximum degree of *G* is $\Delta(G) := max_{x \in V(G)}degree(x)$. The girth of a graph *G* is g(G) := the length of maximal induced cycle in *G*. A vertex is called pendant if its degree is 1. Let n(G) = |V(G)| and e(G) be the

* Corresponding author.

http://dx.doi.org/10.1016/j.tcs.2016.08.020 0304-3975/© 2016 Elsevier B.V. All rights reserved.

^{*} The project supported partially by National Natural Science Foundation of China (No. 11401181) and the first author is supported by Tian Jin Normal University Project (No. 52XB1206).

E-mail addresses: xcdeng@mail.tjnu.edu.cn, dengyuqiu1980@126.com (X. Deng).

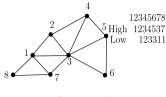


Fig. 1. Example.

size of *G*. Obviously $diam(G) \le rc(G) \le e(G)$. From [9], we know that rainbow connection number of any complete graph is 1 and that of a tree is its size.

Obviously, we know that cut-edges must have distinct colors when *G* is rainbow connected. Thus stars have arbitrarily large rainbow connection number while having diameter 2. Therefore, it is significant to seek upper bound on rc(G) in terms of diam(G) in 2-edge-connected graphs. Chandran et al. [8] showed that $rc(G) \leq rad(G)(rad(G) + 2)$ when *G* is 2-edge-connected, and hence $rc(G) \leq diam(G)(diam(G) + 2)$. Li et al. [13] proved that $rc(G) \leq 5$ when *G* is a 2-edge-connected graph with diameter 2. Li et al. [14] proved that $rc(G) \leq 9$ when *G* is a 2-edge-connected graph with diameter 3.

Recalling an outerplanar graph is a planar graph which has a plane embedding with all vertices placed on the boundary of a face, usually taken to be the exterior one. A MOP is an outerplanar graph which can not be added any line without losing outerplanarity.

By [1], a MOP can be recursively defined as follows: (a) K_3 is a MOP. (b) For a MOP H_1 embedded in the plane with vertices lying in the exterior face F_1 , H_2 is obtained by joining a new vertex to two adjacent vertices on F_1 . Then H_2 is a MOP. (c) Any MOP can be constructed by finite steps of (a) and (b).

Note each inner face of a MOP *H* is a triangle and the connectivity $\kappa(H) = 2$. Moreover, *H* can be represented by two line arrays High(1), High(2), \cdots , High(n) and Low(1), Low(2), \cdots , Low(n). Here for any vertex *i*, High(i) and Low(i) are labels of its two neighbors whose labels are less than *i*, and High(i) > Low(i); and High(1), Low(1) and Low(2) are undefined, and High(2) = 1. Fig. 1 illustrates a MOP and its canonical representation.

Property (A). A graph is outerplanar if and only if it has no K_4 or $K_{2,3}$ minor.

We summarize some results for the rainbow connection number of graphs in the following.

Huang et al. proved that if *G* is a bridgeless outerplanar graph of order *n* and diam(G) = 2, then $rc(G) \le 3$ and the bound is tight. Moreover they proved that if diam(G) = 3, then $rc(G) \le 6$, in [16].

Theorem 1.1. ([9]) For a cycle C_n , we have

$$rc(C_n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \lceil \frac{n}{2} \rceil & \text{if } n \text{ is odd.} \end{cases}$$

Chandran et al. [8] studied the relation between rainbow connection numbers and connected dominating sets, and they obtained the following results:

- (1) For any bridgeless chordal graph G, $rc(G) \leq 3rad(G)$. Moreover, the result is tight.
- (2) For any unite interval graph G with $\delta(G) \ge 2$, rc(G) = diam(G).

A finite simple connected graph G is called a Fan if it is $P_n \vee K_1$ (the join of P_n and K_1), denoted by Fan_n, for some $n \in \mathbb{N} \setminus \{1\}$. Here the vertex v of K_1 is called central vertex, the edges $v_i v_{i+1} (1 \le i \le n-1)$ of $P_n = (v_1 v_2 \cdots v_n)$ are called path edges, and the edges $v_i v$ between P_n and K_1 are called spoke edges.

Theorem 1.2. ([4]) The rainbow connection number of Fan_n satisfies

$$rc(Fan_n) = \begin{cases} 1 & if n = 2, \\ 2 & if 3 \le n \le 6, \\ 3 & if n \ge 7. \end{cases}$$

Theorem 1.3. ([5]) Let G be a bridgeless outerplanar graph of order n.

1. If diam(G) = 2, then

$$rc(G) = \begin{cases} 3 & \text{if } G = F_n \ (n \ge 7) \text{ or } C_5, \\ 2 & \text{otherwise.} \end{cases}$$

2. If diam(G) = 3, then $3 \le rc(G) \le 4$ and the bound is tight.

Download English Version:

https://daneshyari.com/en/article/4952441

Download Persian Version:

https://daneshyari.com/article/4952441

Daneshyari.com