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a  b  s  t  r  a  c  t

This paper  examines  the  problem  of  output  feedback  control  of a  Takagi–Sugeno  (TS)  fuzzy fishery  system.
The considered  system  is  the  continuous  age  structured  model  of  an  exploited  population  that  includes
a  nonlinear  stock–recruitment  relationship.  The  effort  is  used  as  control  term,  the  age  classes  as  states
and  the  quantity  of captured  fish  per  unit  of effort  as  measured  output.  In  order  to stabilize  the  stock
states  around  the  references  equilibrium,  which  means  biologically  the  sustainability  of  the  fish  stock,  the
output feedback  controller  is adopted,  rather  than a controller  based  on  the  state  observer.  An  algorithm
based  on  the  linear  matrix inequality  is  proposed  to compute  the  static  output  feedback  gain.  Simulation
results  of  the  continuous  fishery  systems  confirm  the  effectiveness  of  the  proposed  design.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

One of the desirable objectives in the management of fisheries
resources is the conservation of the fish population. The formu-
lation of good harvesting policies which take into account this
objective is complex and difficult to achieve. It can be realized
by stabilizing the stock states around the reference equilibrium,
which means biologically the sustainability of the fish stock. In
order to solve this control engineering problem several researchers
use state feedback as controller. However in fisheries systems,
the resources cannot be counted directly, except with acoustic
method which is not generalized yet, so the state feedback control
law is not realizable. In order to solve this problem, the current
paper deals with the synthesis of the output feedback control
law to stabilize the states variables around the reference equilib-
rium [1]. But in [1] the studied model is a structured model with
two age classes only, and the application of the Jurdjevic–Quinn
[2] method to a model with n (n > 2) age classes is complex.
To overcome this limitation, a different technique based on the
Takagi–Sugeno (T–S) [3] multimodel approach is introduced, in
order to compute the static output feedback gain for this fishery
system.
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During the last two decades, T–S fuzzy models have attracted
the attention of many researchers [4–10]. They offer the possibil-
ity to apply some tools coming from the linear theory, whereas
those models are composed of linear submodels blended with fuzzy
membership functions. The study of stabilization is very often done
using a direct Lyapunov approach, and especially with the well-
known quadratic functions [11]. T–S fuzzy systems can represent
exactly a nonlinear model [11], from this exact model, static output
feedback control law may  be designed based on the linear subsys-
tems [12].

To the best of our knowledge, the problem of stabilizing
exploited fish population systems through static output feedback
control law and using T–S fuzzy models has not been studied in
the literature. In this work a static output feedback control law
based on Takagi–Sugeno multimodel approach is proposed and
applied to a continuous nonlinear fish population system. The
controller gain is calculated using linear matrix inequalities (LMI)
[13].

The outline of this paper is as follows. First, in Section 2, the T–S
type fuzzy model is briefly presented to model the fishery system,
and based on Lyapunov’s approach; a stability criterion is derived
to guarantee the stability of the fishery system via an LMI formula-
tion. Then, Section 3 deals with the description of the continuous
stage structured model, which is transformed to a T–S fuzzy model.
In Section 4, the procedure to design the control law is applied,
and simulations using numerical data of some fisheries models are
given to demonstrate the effectiveness of the proposed controller.
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2. Takagi–Sugeno fuzzy models

2.1. Model representation

In the following the concept of T–S multiple model is introduced.
The main idea of the T–S fuzzy modeling method is to partition the
nonlinear system dynamics into several locally linearized subsys-
tems, so that the overall nonlinear behavior of the system can be
captured by fuzzy blending of such subsystems through nonlinear
fuzzy membership functions. Unlike conventional modeling tech-
niques which use a single model to describe the global behavior
of a nonlinear system, fuzzy modeling is essentially a multi-model
approach in which simple submodels (typically linear models) are
fuzzily combined to describe the global behavior of a nonlinear
system.

The continuous-time T–S fuzzy system is described as a set of N
rules, where each rule i uses p membership functions (Mi1, . . .,  Mip)
and p fuzzy variables (z1(t), . . .,  zp(t)), as follows:

Model Rule i :

IF z1(t) is Mi1 and . . . and zp(t) is Mip

THEN ẋ(t) = Aix(t) + Biu(t)

ẏ(t) = Cix(t)

Here, Mij is the fuzzy set, r is the number of model rules, x(t) ∈ Rn

is the state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rq is the output
vector, Ai ∈ Rn×n, B ∈ Rn×m, and C ∈ Rq×n; z1(t), . . .,  zp(t) are known
premise variables that may  be functions of the state variables,
external disturbances, and/or time.z(t) will be used to denote the
vector containing all the individual elements z1(t), . . .,  zp(t). Given a
pair of (x(t), u(t)), and using singleton fuzzifier, max-product infer-
ence and center average defuzzifier, the aggregated fuzzy model
can be written as:

ẋ(t) =
∑r

i=1wi{z(t)}{Aix(t) + Biu(t)}∑r
i=1wi(z(t))

(1)

where z(t) = [z1(t) z2(t) . . . zp(t)], and wi{z(t)} =
∏p

j=1Mij{zj(t)}.
The term Mij {zj(t)} is called the membership function. It is the

grade of membership of zj(t) in Mij. Eq. (1) can be written as follows:

ẋ(t) =
r∑

i=1

�i{z(t)}{Aix(t) + Biu(t)} (2)

where �i{z(t)} = wi{z(t)}/
∑r

j=1wj{z(t)}. �i {z(t)} is called the acti-
vation function.

Since
∑r

i=1wi{z(t)} > 0 and wi{z(t)} ≥ 0, i = 1, 2, . . .r, one has:∑r
i=1�i{z(t)} = 1 and �i {z(t)} ≥0, i = 1, 2, . . .,  r, for all t.
The global output of T–S model is interpolated as follows:

y(t) =
r∑

i=1

�i{z(t)}Cix(t) (3)

2.2. Stability conditions and control design

An LMI-based design method using fuzzy state feedback control
has been proposed in [14]. However, in real-world control prob-
lems, the states may  not be completely accessible. In such cases,
one needs to resort to output feedback design methods that are use-
ful when only the output of the system is available. An attempt to
solve this problem was the synthesis of the static output feedback
control law to stabilize the state variables around the reference
equilibrium [1]. But in [1] the studied model is a structured model
of two age classes only, and the application of the Jurdjevic–Quinn
[2] method to a model of n (n > 2) age classes is complex. Thus, fuzzy

static output feedback control is the most desirable since it can be
implemented easily with low cost.

In the literature, the main control law used as a nonlinear static
output feedback is the output parallel distributed compensation
(OPDC). In the OPDC synthesis, each control rule is designed from
the corresponding rule of a T–S fuzzy model. The designed fuzzy
controller shares the same fuzzy sets with the fuzzy model in the
premise parts. For the fuzzy models (3) the following fuzzy con-
troller via the OPDC law is constructed:

Control Rule i :

IF z1(t) is Mi1 and . . . and zp(t) is Mip

THEN u(t) = Fiy(t) i = 1, 2, . . .,  r

The overall fuzzy control law is composed of several linear out-
put feedbacks blended together using the nonlinear functions �i(·)
of the model:

u(t) =
r∑

i=1

�i{z(t)}Fiy(t) (4)

The fuzzy controller design is to find the local feedback gains
Fi ∈ Rmq in the consequent parts.

In the sequel, it is assumed that Ci = C, i = 1, . . .,  r, is full row rank.
By substituting (4) into (2), the closed-loop fuzzy system under
consideration is:

ẋ(t) =
r∑

i=1

�i{z(t)}�i{z(t)}{(Ai + BiFiC)x(t)} (5)

The stability of the closed-loop system (5) has been investi-
gated in the literature: see [11] and the references there in. Here, a
previous result on the stabilization of continuous-time fuzzy sys-
tems that are obtained via a quadratic Lyapunov function [12]
is announced. It deals with sufficient conditions in LMIs form to
ensure asymptotic stability of (5).

Theorem 1 ([12]). Suppose that there exist matrices Ni, M,  S and
Q such that

Q > 0, S > 0

QAT
i

+ AiQ + CT NT
i

+ BiNiC + (s − 1)S  < 0 i = 1, 2, . . .,  r
(6a)

Q (Ai + Aj)
T + (Ai + Aj)Q + CT (NT

j BT
j )

+ (BiNi + BjNi)C − 2s ≤ 0 i = 1, 2, . . ., r (6b)

and

CQ = MC  (7)

with �i(z(t))�i(z(t)) /= 0. Then the T–S model (5) is globally asymp-
totically stable with the OPDC controller (4) where

Fi = NiM
−1 ∀i ∈ {1, . . .,  r} (8)

s is the number of submodels simultaneously activated.

Remarks.

– Note that the design conditions presented above (Theorem 1) are
only sufficient conditions. A major advantage of these conditions
compared especially with the application of the Jurdjevic–Quinn
[2] method used in [1] is that they are cast into an LMI  form, and
therefore easily solvable.

– Theorem 1 overcomes the source of conservatism for the pro-
posed design in [1]. Obtained results are not valid in an invariant
domain only.
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