Embedded connectivity of recursive networks

Xiang-Jun Li ${ }^{\text {a }}$, Qi-Qi Dong ${ }^{\text {a }}$, Zheng Yan ${ }^{\text {a }}$, Jun-Ming Xu ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, 434023, China
${ }^{\mathrm{b}}$ School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, China

A R T I C L E I N F O

Article history:

Received 13 April 2016
Received in revised form 2 September 2016
Accepted 25 September 2016
Available online xxxx
Communicated by C. Kaklamanis

Keywords:

Connectivity
Embedded connectivity
Fault-tolerance
h-super connectivity
Hypercubes
Star graphs
Bubble-sort graphs

Abstract

Let G_{n} be an n-dimensional recursive network. The h-embedded connectivity $\zeta_{h}\left(G_{n}\right)$ (resp. edge-connectivity $\eta_{h}\left(G_{n}\right)$) of G_{n} is the minimum number of vertices (resp. edges) whose removal results in disconnected and each vertex is contained in an h-dimensional subnetwork G_{h}. This paper determines ζ_{h} and η_{h} for the hypercube Q_{n} and the star graph S_{n}, and η_{3} for the bubble-sort network B_{n}.

(c) 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. An interconnection network can be modeled by a graph $G=(V, E)$, where V is the set of processors and E is the set of communication links in the network.

The connectivity $\kappa(G)$ (resp. edge-connectivity $\lambda(G))$ of G is defined as the minimum number of vertices (resp. edges) whose removal from G results in a disconnected graph. The connectivity $\kappa(G)$ and edge-connectivity $\lambda(G)$ of a graph G are two important measurements for fault tolerance of the network since the larger $\kappa(G)$ or $\lambda(G)$ is, the more reliable the network is.

However, the definitions of $\kappa(G)$ and $\lambda(G)$ are implicitly assumed that any subset of system components is equally likely to be faulty simultaneously, which may not be true in real applications, thus they underestimate the reliability of the network. To overcome such a shortcoming, Harary [2] introduced the concept of conditional connectivity by appending some requirements on connected components, Latifi et al. [3] specified requirements and proposed the concept of the restricted h-connectivity. These parameters can measure fault tolerance of an interconnection network more accurately than the classical connectivity. The concepts stated here are slightly different from theirs.

[^0]http://dx.doi.org/10.1016/j.tcs.2016.09.022
0304-3975/© 2016 Elsevier B.V. All rights reserved.

Fig. 1. The n-cubes Q_{1}, Q_{2}, Q_{3} and Q_{4}.

For a graph $G, \delta(G)$ denotes its minimum degree. A subset $S \subset V(G)$ (resp. $F \subset E(G)$) is called an h-vertex-cut (resp. h-edge-cut), if $G-S$ (resp. $G-F$) is disconnected and $\delta(G-S) \geq h$. The h-super connectivity $\kappa^{h}(G)$ (resp. h-super edgeconnectivity $\left.\lambda^{h}(G)\right)$ of G is defined as the cardinality of a minimum h-vertex-cut (resp. h-edge-cut) of G.

For any graph G and any integer h, determining $\kappa^{h}(G)$ and $\lambda^{h}(G)$ is quite difficult, no polynomial algorithm to compute them has been yet known so far. In fact, the existence of $\kappa^{h}(G)$ and $\lambda^{h}(G)$ is an open problem for $h \geq 1$. Only a little knowledge of results has been known on κ^{h} and λ^{h} for some special classes of graphs for any h, such as the hypercube Q_{n} and the star graph S_{n}.

In order to facilitate the expansion of the network, and to use the same routing algorithm or maintenance strategy as used in the original one, large-scale parallel computing systems always take some networks of recursive structures as underlying topologies, such as the hypercube Q_{n}, the star graph S_{n}, the bubble-sort graph B_{n} and so on. Since the presence of vertex and/or edge failures maybe disconnects the entire network, one hopes that every remaining component has undamaged subnetworks (i.e., smaller networks with same topological properties as the original one). Under this consideration, Yang et al. [12] proposed the concept of embedded connectivity.

Let G_{n} be an n-dimensional recursive network. For a positive integer h with $h \leq n-1$, there is a sub-network $G_{h} \subset G_{n}$. Let $\delta_{h}=\delta\left(G_{h}\right)$.

A subset $F \subset V\left(G_{n}\right)$ (resp. $F \subset E\left(G_{n}\right)$) is an h-embedded vertex-cut (resp. h-embedded edge-cut) if $G_{n}-F$ is disconnected and each vertex is contained in an h-dimensional subnetwork G_{h}. The h-embedded connectivity $\zeta_{h}\left(G_{n}\right)$ (resp. edge-connectivity $\eta_{h}\left(G_{n}\right)$) of G_{n} is defined as the cardinality of a minimum h-embedded vertex-cut (resp. h-embedded edge-cut) of G_{n}.

By definition, if S is an h-embedded vertex-cut of G_{n} with $|S|=\zeta_{h}\left(G_{n}\right)$, then $G_{n}-S$ contains a sub-network G_{h}, and so $\delta\left(G_{n}-S\right) \geq \delta_{h}$, which implies that S is a δ_{h}-vertex-cut of G_{n}. Thus, $\kappa^{\delta_{h}}\left(G_{n}\right) \leq|S|=\zeta_{h}\left(G_{n}\right)$. Similarly, $\lambda^{\delta_{h}}\left(G_{n}\right) \leq \eta_{h}\left(G_{n}\right)$. These facts are useful and we write them as the following lemma.

Lemma 1.1. For $h \leq n-1, \zeta_{h}\left(G_{n}\right) \geq \kappa^{\delta_{h}}\left(G_{n}\right)$ if $\zeta_{h}\left(G_{n}\right)$ exists, and $\eta_{h}\left(G_{n}\right) \geq \lambda^{\delta_{h}}\left(G_{n}\right)$ if $\eta_{h}\left(G_{n}\right)$ exists.

Using Lemma 1.1, for a star graph S_{n} and a bubble-sort graph B_{n}, Yang et al. [12,13] determined $\zeta_{2}\left(S_{n}\right)=2 n-4$ for $n \geq 3, \eta_{2}\left(S_{n}\right)=2 n-4$ for $n \geq 3$ and $\eta_{3}\left(S_{n}\right)=6(n-3)$ for $n \geq 4$; and $\zeta_{2}\left(B_{n}\right)=2 n-4$ for $n \geq 3$. In this paper, we will determine ζ_{h} and η_{h} for Q_{n} and S_{n} for any $h \leq n-1$ and determine $\eta_{3}\left(B_{n}\right)$.

The rest of the paper is organized as follows. In Section 2, we determine $\zeta_{h}\left(Q_{n}\right)=2^{h}(n-h)$ for $h \leq n-2$ and $\eta_{h}\left(Q_{n}\right)=$ $2^{h}(n-h)$ for $h \leq n-1$. In Section 3, we determine $\zeta_{h}\left(S_{n}\right)=\eta_{h}\left(S_{n}\right)=h!(n-h)$ for $1 \leq h \leq n-1$. In Section 4, we determine $\eta_{3}\left(B_{n}\right)=6(n-3)$ for $n \geq 4$ and point out a flaw in the proof of this conclusion in [13]. A conclusion is in Section 5 .

For graph terminology and notation not defined here we follow Xu [10]. For a subset X of vertices in G, we do not distinguish X and the induced subgraph $G[X]$.

2. Hypercubes

The hypercube Q_{n} has the vertex-set consisting of 2^{n} binary strings of length n, two vertices being linked by an edge if and only if they differ in exactly one position. Hypercubes $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ are shown in Fig. 1 .

https://daneshyari.com/en/article/4952451

Download Persian Version:

https://daneshyari.com/article/4952451

Daneshyari.com

[^0]: th The work was supported by National Natural Science Foundation of China (61272008, 11571044, 61503046), Natural Science Foundation of Hubei Province (2014CFB248), Young talent fund from Hubei EDU (Q20151311) and ORFIAM, Yangtze University (KF1505, KF1506).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

