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We consider a Reinforcement Learning setup where an agent interacts with an environment 
in observation–reward–action cycles without any (esp. MDP) assumptions on the environ-
ment. State aggregation and more generally feature reinforcement learning is concerned 
with mapping histories/raw-states to reduced/aggregated states. The idea behind both is 
that the resulting reduced process (approximately) forms a small stationary finite-state 
MDP, which can then be efficiently solved or learnt. We considerably generalize existing ag-
gregation results by showing that even if the reduced process is not an MDP, the (q-)value 
functions and (optimal) policies of an associated MDP with same state-space size solve the 
original problem, as long as the solution can approximately be represented as a function 
of the reduced states. This implies an upper bound on the required state space size that 
holds uniformly for all RL problems. It may also explain why RL algorithms designed for 
MDPs sometimes perform well beyond MDPs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In Reinforcement Learning (RL) [25], an agent � takes actions in some environment P and observes its consequences 
and is rewarded for them. A well-understood and efficiently solvable [23] and efficiently learnable [27,14] case is where 
the environment is (modeled as) a finite-state stationary Markov Decision Process (MDP). Unfortunately most interesting 
real-world problems P are neither finite-state, nor stationary, nor Markov. One way of dealing with this mismatch is to 
somehow transform the real-world problem into a small MDP: Feature Reinforcement Learning (FRL) [10] and U-tree [16]
deal with the case of arbitrary unknown environments, while state aggregation assumes the environment is a large known 
stationary MDP [6,1,5]. The former maps histories into states (Section 2), the latter groups raw states into aggregated states.

Here we follow the FRL approach and terminology, since it is arguably most general: It subsumes the cases where the 
original process P is an MDP, a k-order MDP, a POMDP, and others (Section 3). Thinking in terms of histories also naturally 
stifles any temptation of a naive frequency estimate of P (no history ever repeats). Finally we find the history vs state 
terminologically somewhat neater than raw state vs aggregated state.

More importantly, we consider maps φ from histories to states for which the reduced process Pφ is not (even approxi-
mately) an MDP (Section 4). At first this seems to defeat the original purpose, namely of reducing P to a well-understood 
and efficiently solvable problem class, namely small MDPs. The main novel contribution of this paper is to show that there 
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is still an associated finite-state stationary MDP p whose solution (approximately) solves the original problem P , as long as 
the solution can still be represented (Section 5). Indeed, we provide an upper bound on the required state space size that 
holds uniformly for all P (Section 6). While these are interesting theoretical insights, it is a-priori not clear whether they 
could by utilized to design (better) RL algorithms. We also show how to learn p from experience (Section 7), and sketch an 
overall learning algorithm and regret/PAC analysis based on our main theorems (Section 8). We briefly discuss how to relax 
one of the conditions in our main theorems by permuting actions (Section 9). We conclude with an outlook on future work 
and open problems (Section 10). A list of notation can be found in Appendix A.

The diagram below depicts the dependencies between our results:
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2. Feature Markov decision processes (�MDP)

This section formally describes the setup of [10]. It consists of the agent–environment framework and maps φ from 
observation–reward–action histories to MDP states. This arrangement is called “Feature MDP” or short �MDP. We use 
upper-case letters P , Q , V , and � for the Probability, (Q-)Value, and Policy of the original (agent–environment interac-
tive) Process, and lower-case letters p, q, v , and π for the probability, (q-)value, and policy of the (reduced/aggregated) 
MDP.

Agent–environment setup [10]. We start with the standard agent–environment setup [24] in which an agent � interacts 
with an environment P . The agent can choose from actions a ∈ A and the environment provides observations o ∈ O and 
real-valued rewards r ∈ R ⊆ [0; 1] to the agent. This happens in cycles t = 1, 2, 3, ...: At time t , after observing ot and 
receiving reward rt , the agent takes action at based on history

ht := o1r1a1...ot−1rt−1at−1otrt ∈ Ht := (O ×R×A)t−1 ×O ×R
Then the next cycle t + 1 starts. The agent’s objective is to maximize its long-term reward. To avoid integrals and densities, 
we assume spaces O and R are finite. They may be huge, so this is not really restrictive. Indeed, the �MDP framework 
has been specifically developed for huge observation spaces. Generalization to continuous O and R is routine [8]. Further-
more we assume that A is finite and smallish, which is restrictive. Potential extensions to continuous A are discussed in 
Section 10.

The agent and environment may be viewed as a pair of interlocking functions of the history H := (O ×R ×A)∗ ×O ×
R ∪ {ε}, where ε is the empty history.

Env. P : H×A � O ×R, P (ot+1rt+1|htat),

Agent � : H � A, �(at |ht) or at = �(ht),
�� �	Agent �

�� �	Env.P
action �

reward�
observation

�

where � indicates that mappings → are in general stochastic. We make no (stationarity or Markov or other) assumption 
on environment P . For most parts, environment P is assumed to be fixed, so dependencies on P will be suppressed. For 
convenience and since optimal policies can be chosen to be deterministic (see Eq. (4)), we consider deterministic policies 
at = �(ht) only.

Value functions, optimal Policies, and history Bellman equations. We measure the performance of a policy � in terms of 
the P -expected γ -discounted reward sum (0 ≤ γ < 1), called (Q-)Value of Policy � at history ht (and action at )

V �(ht) := E�[Rt |ht], Q �(ht,at) := E�[Rt |htat], Rt :=
∞∑

τ=t+1

γ τ−trτ

The optimal Policy and (Q-)Value functions are

V ∗(ht) := max
�

V �(ht)

Q ∗(ht,at) := max
�

Q �(ht,at) (1)

�∗ :∈ arg max
�

V �(ε)
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