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Given a set P of n coloured points on the real line, we study the problem of answering 
range α-majority (or “heavy hitter”) queries on P . More specifically, for a query range Q, 
we want to return each colour that is assigned to more than an α-fraction of the points 
contained in Q. We present a new data structure for answering range α-majority queries 
on a dynamic set of points, where α ∈ (0, 1). Our data structure uses O (n) space, supports 
queries in O ((lgn)/α) time, and updates in O ((lg n)/α) amortized time. If the coordinates 
of the points are integers, then the query time can be improved to O (lg n/(α lg lg n)). For 
constant values of α, this improved query time matches an existing lower bound, for any 
data structure with polylogarithmic update time. We also generalize our data structure to 
handle sets of points in d dimensions, for d ≥ 2, as well as dynamic arrays, in which each 
entry is a colour.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many problems in computational geometry deal with point sets that have information encoded as colours assigned to 
the points. In this paper, we design dynamic data structures for the range α-majority problem, in which we want to report 
colours that appear frequently within an axis-aligned query rectangle. This problem is useful in database applications in 
which we would like to know typical attributes of the data points in a query range [22,23]. For the one-dimensional case, 
where the points represent time stamps, this problem has data mining applications for network traffic logs, similar to those 
of coloured range counting (cf. [16]).

Formally, we are given a set, P , of n points, where each point p ∈ P is assigned a colour c from a set, C , of colours. 
The colour of p is denoted by col(p) = c. We are also given a fixed parameter α ∈ (0, 1) that defines the threshold for 
determining whether a colour is to be considered frequent. Our goal is to design a dynamic range α-majority data structure
that can perform the following operations:

• Query(Q): We are given an axis-aligned hyper-rectangle Q as a query. Let P(Q) be the set {p | p ∈ P ∩ Q}, and 
P(Q, c) be the set {p | p ∈ P(Q), col(p) = c}. The answer to the query Q is the set of colours C� such that for each 
colour c ∈ C� , |P(Q, c)| > α|P(Q)|, and for all c /∈ C� , |P(Q, c)| ≤ α|P(Q)|. We refer to a colour c ∈ C� as an α-majority

✩ A preliminary version of this work [13] appeared in the 22nd International Symposium on Algorithms and Computation (ISAAC 2011).
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for Q, and this type of query as an α-majority query. When α = 1/2, the problem is to identify the majority colour in 
Q, if such a colour exists.

• Insert(p, c): Insert a point p with colour c into P .
• Delete(p): Remove the point p from P .

1.1. Related work

For a comprehensive survey of similar types of range queries see the recent survey by Skala [30]; we mention only 
the most closely related results here. In the following we note that the threshold α ∈ (0, 1) is fixed—but not necessarily 
constant—at construction time. For some results, which we further distinguish by calling parameterized, some β ∈ (α, 1) is 
given at query time and the query is expected to return the β-majorities in the query range. If we do not specify the value 
of β , the reader may assume the result is for the fixed case: i.e., β = α for all queries.

1.1.1. Static case
Karpinski and Nekrich [22] first studied the problem of answering range α-majority queries, which they called coloured 

α-domination queries. In the static case, they gave an O (n/α) space data structure that supports one-dimensional queries in 
O ((lg n lg lg n)/α) time,1 and an O ((n lg lg n)/α) space data structure that supports queries in O ((lg n)/α) time. For points 
in d dimensions, for constant d ≥ 2, they gave a static O ((n lgd−1 n)/α) space data structure that supports queries in 
O ((lgd n)/α) time.

Durocher et al. [11] gave a static data structure occupying O (n(lg(1/α) +1)) space and answers range α-majority queries 
in an array in O (1/α) time. The array setting is equivalent to the point set having x-coordinates 1, ..., n. Their data structure 
is based on the idea that it is possible to produce a short list of candidate α-majorities for any query, and then efficiently 
verify the frequencies of these candidates using succinct data structures. In the journal version of the same paper [12], 
they described how to extend their technique to d dimensions for constant d ≥ 2, resulting in an O (n lgd−1 n) space data 
structure that supports range α-majority queries in O (lgd n/α) time.

Gagie et al. [15] considered the problem in 2D arrays, and also improved the static one-dimensional result to 
O (n(min(lg(1/α), H) + 1)) space, where H ≤ lg n is the zeroth-order empirical entropy of the sequence stored in the ar-
ray. The same authors also described how to improve the query time to O (1/β) for the parameterized case. A similar result 
was proved independently by Chan et al. [7]. Recently, all these results were improved even further by Belazzougui et al. [4]
who gave an O (n) space data structure with O (1/α) query time for the static non-parameterized case, and an O (n lg lg n)

space data structure with O (1/β) query time for the static parameterized case. They also presented several space-time trade 
offs for the parameterized case.

For the two-dimensional static case, Wilkinson [33] presented an improved data structure that occupies O (n lgε n(lg(1/α)

+ 1)) space, for any constant ε > 0, and can answer queries in O (lg n/α) time. To get this speedup Wilkinson observed that 
we can break the query into three phases. In the first phase, we extract a list of candidates from our data structure. In the 
second phase, we use approximate range counting to reduce the size of the candidate list to O (1/α): i.e., we eliminate a lot 
of candidates before spending time verifying their frequencies exactly. Then, finally, in the third phase we use an expensive 
exact range counting query to determine which of the candidates from this short list are actually α-majorities.

Navarro and Russo [28]—also at ISAAC 2011—presented data structures for the two-dimensional case. A later final version 
of their paper [27] (with Y. Nekrich), provides several trade-offs with the previous results. Their results are stated in terms of 
several parameters, but we simplify them to be in terms of an n ×n grid for simplicity. In particular, for the two-dimensional 
static case, they can answer α-majority queries in O (n) space and O (lg3 n/α) time. However, for the larger space case their 
results fall short of Wilkinson’s [33].

1.1.2. Dynamic case
In the dynamic case, Karpinski and Nekrich [22] gave an O (n/α) space data structure for one-dimensional queries that 

supports queries and insertions in O ((lg2 n)/α) time, and deletions in O ((lg2 n)/α) amortized time. They also gave an 
alternative O ((n lg n)/α) space data structure that supports queries and insertions in O ((lg n)/α) time, and deletions in 
O ((lg n)/α) amortized time. For points in d dimensions they gave a dynamic O ((n lgd−1 n)/α) space data structure that 
supports queries and insertions in O ((lgd+1 n)/α) time, and deletions in O ((lgd+1 n)/α) amortized time.

For the two-dimensional case, as in the static case, Navarro, Nekrich, and Russo [27] provide several trade-offs. In the 
two-dimensional dynamic case, their data structure occupies O (n lg n) space, and has O ((lg3 n)/(α lg lg n)) query time, and 
O ((lg3 n)/(lg lg n)) updates (without amortization).

1.1.3. Approximate variants of the problem
Researchers have also examined an approximate version of the range α-majority problem, in which the solution must 

contain all the α-majorities in a query range, but can also contain some false positives. This is a data structure variant 
of the very heavily studied “heavy hitters” problem, in which we wish to find α-majorities (possibly allowing some false 

1 lgn denotes �log2 n�.
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