
Theoretical Computer Science 644 (2016) 127–142

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Conspiracy number search with relative sibling scores ✩

Jakub Pawlewicz a,∗, Ryan B. Hayward b,∗
a Institute of Informatics, University of Warsaw, Poland
b Computing Science, University of Alberta, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 January 2016
Received in revised form 17 May 2016
Accepted 20 June 2016
Available online 27 June 2016

Keywords:
Conspiracy number search
Search algorithm
Hex

For some two-player games (e.g. Go), no accurate and inexpensive heuristic is known 
for evaluating leaves of a search tree. For other games (e.g. chess), a heuristic is known 
(sum of piece values). For other games (e.g. Hex), only a local heuristic — one that 
compares children reliably, but non-siblings poorly — is known (cell voltage drop in the 
Shannon/Anshelevich electric circuit model). In this paper we introduce a search algorithm 
for a two-player perfect information game with a reasonable local heuristic.
Sibling Conspiracy Number Search (SCNS) is an anytime best-first version of Conspiracy 
Number Search based not on evaluation of leaf states of the search tree, but — for each 
node — on relative evaluation scores of all children of that node. SCNS refines CNS search 
value intervals, converging to Proof Number Search. SCNS is a good framework for a game 
player.
We tested SCNS in the domain of Hex, with promising results. We implemented an 
11-by-11 SCNS Hex bot, DeepHex. We competed DeepHex against current Hex bot 
champion MoHex, a Monte Carlo Tree Search player, and previous Hex bot champion 
Wolve, an Alpha–Beta Search player. DeepHex widely outperforms Wolve at all time levels, 
and narrowly outperforms MoHex once time reaches 4 min/move.
We tested the strength of SCNS features: most critical is to initialize leaves via a multi-step 
process. Also, we show a simple parallel version of SCNS: it scales well for 2 threads but 
less efficiently for 4 or 8 threads.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider a 2-player perfect information game with no known global heuristic, but with a reasonable local heuristic 
evaluation (good at relative scoring of children of a node, but bad at comparing non-sibling nodes). Suppose you want to 
build a bot for this game. What algorithm would you use?

The usual algorithms have drawbacks for a game with only a local heuristic. αβ Search [20] needs a globally reliable 
heuristic. Monte Carlo Tree Search1 [9,8], which uses random simulations, needs no heuristic but can be slow to converge. 

✩ Research supported by Natural Sciences and Engineering Research Council of Canada Discovery Grant 137764.

* Corresponding authors.
E-mail addresses: pan@mimuw.edu.pl (J. Pawlewicz), hayward@ualberta.ca (R.B. Hayward).

1 MCTS is a non-uniform best-first search that uses random simulations to evaluate leaves. Strong moves are exploited; weak moves are explored only if 
a visit threshold — based on an exploitation/exploration formula such as Upper Confidence Bound [21] — is crossed.

http://dx.doi.org/10.1016/j.tcs.2016.06.027
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.06.027
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:pan@mimuw.edu.pl
mailto:hayward@ualberta.ca
http://dx.doi.org/10.1016/j.tcs.2016.06.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.06.027&domain=pdf


128 J. Pawlewicz, R.B. Hayward / Theoretical Computer Science 644 (2016) 127–142

Proof-Number Search2 [2] performs well as a solver, particularly on search trees with non-uniform branching, but can be 
weak as a player, especially early in games with search trees with almost uniform branching.

In this paper we introduce Sibling Conspiracy Number Search, an algorithm for a two-player perfect information game 
with a reasonable local heuristic. SCNS is based on Conspiracy-Number Search [25,26], which generalizes PNS: in PNS, each 
search tree leaf score is −1 or 1, while in CNS a leaf score can have any value — e.g. any floating point value in the range 
from −1 to 1 — that indicates an associated final game score. For a node in a search tree and a target minimax value, the 
conspiracy number is the minimum number of leaves whose evaluations must change in order for the node’s minimax score 
to reach the target. CNS expands leaves in an order that is based on conspiracy numbers. SCNS combines features of MCTS 
(anytime, best-first) and PNS (strong tactically, approaching perfect play near the end of a game). We will explain CNS and 
SCNS in further detail later.

Hex has a reliable local heuristic,3 so we pick 11×11 Hex as our test domain. We ran DeepHex, our SCNS Hex bot, against 
an MCTS player (current champion MoHex) and an αβ player (previous champion Wolve) [4,14]. DeepHex outperforms 
Wolve at all time levels, and outperforms MoHex once time reaches 4 min/move.

Next, we measure the relative contribution of the feature enhancements of our SCNS Hex bot, and measure the perfor-
mance of a parallel implementation.

2. Conspiracy number search

In 2-player game search, CNS has shown promise in chess [35,34,19,24,23,27] and shogi [17]. CNS can be viewed as a 
generalization of PNS, which is how we will describe our implementation.

2.1. Proof number search

Definition 1. Each node n has a proof number (pn) pn and disproof number (dn) dn . A node’s (dis)proof number is the smallest 
number of descendant leaves that, if all true (false), would make the node true (false).4

Fact 1. If a node n is a leaf then

pn = 1 dn = 1 if n is non-terminal

pn = 0 dn = +∞ if n is true

pn = +∞ dn = 0 if n is false,

(1)

otherwise

pn = min
s∈children(n)

ps, dn =
∑

s∈children(n)

ds if n is or-node

pn =
∑

s∈children(n)

ps, dn = min
s∈children(n)

ds if n is and-node.
(2)

Definition 2. A most proving node (mpn) is a leaf whose proof will reduce the root’s proof number and whose disproof will 
reduce the root’s disproof number.

PNS iteratively selects a most proving leaf and expands it. See Algorithms 1 and 2.

Algorithm 1 Proof number search.
1: function PNS(root)
2: while not root solved do
3: n ← SelectMPN(root)
4: Expand n and initiate new children by (1)
5: Update nodes along path to the root using (2)

2 PNS is used in and/or trees (i.e. each leaf has minimax value ±1) and is guided by proof and disproof numbers (for each node, the smallest number of 
descendant leaves that need be 1, resp. −1, for the node to have value 1, resp. −1).

3 Shannon built an analogue circuit to play the connection game Bridg-it, with moves scored by voltage drop [12]. Adding links between virtual connected 
cells [3] improves the heuristic, which although erratic between non-sibling states is reliable among siblings [15]. So we use this heuristic for our Hex SCNS 
bot.

4 In PNS, a leaf node with value true indicates that the search goal is reached. Usually the search goal is to determine the game win/loss value, but it 
could be any desired search goal, e.g. in chess indicating the capture of a queen, or that the game ends in a win or draw but not a loss.



Download	English	Version:

https://daneshyari.com/en/article/4952491

Download	Persian	Version:

https://daneshyari.com/article/4952491

Daneshyari.com

https://daneshyari.com/en/article/4952491
https://daneshyari.com/article/4952491
https://daneshyari.com/

