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Statistical model checking avoids the exponential growth of states of numerical model 
checking, but rare properties are costly to verify. Importance sampling can reduce the cost 
if good importance sampling distributions can be found efficiently.
Our approach uses a tractable cross-entropy minimisation algorithm to find an optimal 
parametrised importance sampling distribution. In contrast to previous work, our algorithm 
uses a naturally defined low dimensional vector to specify the distribution, thus avoiding 
an explicit representation of a transition matrix. Our parametrisation leads to a unique 
optimum and is shown to produce many orders of magnitude improvement in efficiency 
on various models. In this work we link the existence of optimal importance sampling 
distributions to logical properties and show how our parametrisation affects this link. We 
also motivate and present simple algorithms to create the initial distribution necessary for 
cross-entropy minimisation. Finally, we discuss the open challenge of defining error bounds 
with importance sampling and describe how our optimal parametrised distributions may 
be used to infer qualitative confidence.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The most common method to ensure the correctness of a system is by testing it with a number of test cases having 
predicted outcomes that can highlight specific problems. Such testing techniques remain the default in industrial contexts 
and have also been incorporated into sophisticated tools [1]. Despite this, testing is limited by the need to hypothesise 
scenarios that may cause failure and the fact that a reasonable set of test cases is unlikely to cover all possible eventualities. 
Errors and modes of failure in complex systems may remain undetected and quantifying the likelihood of failure using a 
series of test cases is difficult.

Static analysis has been successful in debugging very large systems [2], but its ability to analyse dynamical properties is 
limited by its level of abstraction. In contrast, model checking is a fine-grained exhaustive technique that verifies whether 
a system satisfies a dynamical temporal logic property under all possible scenarios. In recognition of the existence of non-
deterministic and probabilistic systems, and the fact that a Boolean answer is not always useful, numerical model checking 
quantifies the probability that a system satisfies a property. Numerical model checking offers precise and accurate analy-
sis by exhaustively exploring the state space of probabilistic systems. The result of this technique is the notionally exact 
probability (i.e., within the limits of numerical precision and convergence stability) that a system will satisfy a property 
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of interest, however the exponential growth of the state space limits its applicability. The typical state limit of exhaustive 
approaches usually represents an insignificant fraction of the state space of “real” systems. Such systems may have tens of 
orders of magnitude more states than the number of protons in the universe (≈ 1080).

Symbolic model checking using efficient data structures can make certain very large models tractable [3]. It may also be 
possible to construct simpler but behaviourally equivalent abstractions using various symmetry reduction techniques, such as 
partial order reduction, bisimulation and lumping [4]. Compositional approaches may also help. In particular, components of 
a system may be specified in such a way that each is tractable to analysis, while their properties guarantee that certain faults 
are impossible. Despite these techniques, however, the size, unpredictability and heterogeneity of real systems [5] often 
make numerical techniques infeasible. Moreover, even if a system has been specified not to misbehave, it is nevertheless 
necessary to check that it meets its specification.

While the ‘state explosion problem’ [6] is unlikely to ever be entirely solved for all systems, simulation-based approaches 
are becoming increasingly tractable due to the availability of high performance parallel hardware and algorithms. In partic-
ular, statistical model checking (SMC) combines the simplicity of testing with the formality of numerical model checking. 
The core idea of SMC is to create multiple independent execution traces of the system and individually verify whether they 
satisfy some formally specified property. The proportion of satisfying traces is an estimate of the probability that the system 
satisfies the property. By thus modelling the executions of a system as a Bernoulli random variable, the absolute error of 
the estimate can be bounded using, for example, a confidence interval [7, Chap. 1] or a Chernoff bound [8–10]. It is also 
possible to use efficient techniques, such as Bayesian inference [11] and hypothesis testing [12,13], to decide with specified 
statistical confidence whether the probability of a property is above or below a given threshold.

Knowing a result with less than 100% confidence is often sufficient in real applications, since the confidence bounds 
may be made arbitrarily tight. Moreover, a swiftly achieved approximation may prevent a lot of wasted time during model 
design. For many complex systems, SMC offers the only feasible means of quantifying performance. Evidence of this is that 
SMC has been used to find bugs in large, heterogeneous aircraft systems [5]. Dedicated SMC platforms include APMC [14], 
YMER [15], VESTA [16], PLASMA [17] and COSMOS [18]. Well-established numerical model checkers, such as PRISM [19] and 
UPPAAL [20], are now also including SMC engines. Indeed, since SMC may be applied to any discrete event trace obtained 
by stochastic simulation, [21] describes a modular library of SMC algorithms that may be used to construct domain-specific 
SMC tools.

SMC relies on multiple independent simulations, so it may be efficiently divided on parallel computer architectures, 
such as grids, clusters, clouds and general purpose computing on graphics processors (GPGPU). Despite this, rare properties 
require a challenging number of simulations. Standard error bounding strategies for SMC consider absolute error. As the 
probability of a property decreases, however, it is more useful to consider an error bound that is relative to the probability. 
The number of simulations required to bound the relative error, defined as the standard deviation of the estimate divided 
by its expectation, is inversely proportional to rarity. Hence, while SMC may make a verification task feasible, it may nev-
ertheless be computationally intense. To address this problem, in this work we apply the variance reduction technique of 
importance sampling to statistical model checking.

Importance sampling works by simulating a system under a weighted (importance sampling) distribution that makes 
a property more likely to be seen. It then compensates the results by the weights, to estimate the probability under the 
original distribution. The concept arose from work on the ‘Monte Carlo method’ [22] in the 1940s and was originally used 
to quantify the performance of materials and solve otherwise intractable analytical problems with limited computer power 
(see, e.g., [23]).

For importance sampling to be effective it is necessary to define a “good” importance sampling distribution: (i) the 
property of interest must be seen frequently in simulations and (ii) the distribution of the simulation traces that satisfy 
the property in the importance sampling distribution must be as close as possible to the normalised distribution of the 
same traces in the original distribution. Failure to consider both (i) and (ii) can result in gross errors and overestimates 
of confidence. Moreover, the process of finding a good importance sampling distribution must itself be efficient and, in 
particular, should not rely on iterating over all the states or transitions of the system. The algorithms we present in this 
work address all these issues.

The term ‘rare event’ is ubiquitous in the literature. Here we specifically consider rare properties of paths, defined in 
bounded temporal logic (bounded by time or number of steps). This extends the common notion of rarity from states to 
paths. States are rare if the probability of reaching them from the initial state is small. Paths are rare if the probability of 
executing their sequence of states is unlikely–whether or not the states themselves are rare. Rare properties are therefore 
more general than rare states, however the distinction does not significantly alter the mathematical derivation of our al-
gorithms. It can nevertheless affect the existence of the so-called “zero variance” optimal importance sampling distribution 
as a simple re-parametrisation of the states and transitions of the original system. We explore this important subject in 
Section 7.

1.1. Contribution

This work extends [24], describing the additional techniques necessary to apply our importance sampling framework for 
statistical model checking of rare events. We describe simple algorithms to initiate the cross-entropy minimisation process 
by finding at least a few traces that satisfy the property. We believe this subject has been glossed over in previous work. 
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