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Given n elements with nonnegative integer weights w = (w1, . . . , wn), an integer capacity 
C and positive integer ranges u = (u1, . . . , un), we consider the counting version of the 
classic integer knapsack problem: find the number of distinct multisets whose weights add 
up to at most C . We give a deterministic algorithm that estimates the number of solutions 
to within relative error ε in time polynomial in n, log U and 1/ε, where U = maxi ui . 
More precisely, our algorithm runs in O (

n3 log2 U
ε log n log U

ε ) time. This is an improvement 
of n2 and 1/ε (up to log terms) over the best known deterministic algorithm by Gopalan 
et al. (2011) [5]. Our algorithm is relatively simple, and its analysis is rather elementary. 
Our results are achieved by means of a careful formulation of the problem as a dynamic 
program, using the notion of binding constraints.

© 2016 Published by Elsevier B.V.

1. Introduction

In this paper we target at designing a deterministic fully polynomial time approximation scheme (FPTAS) for one of 
the most basic #P-complete counting problems – counting the number of integer knapsack solutions. Given n elements 
with nonnegative integer weights w = (w1, . . . , wn), an integer capacity C , and positive integer ranges u = (u1, . . . , un), 
we consider the counting version of the classic integer knapsack problem: find the size of the set of feasible solutions 
KNAP(w, C, u) = {x | ∑i≤n wi xi ≤ C, 0 ≤ xi ≤ ui}. (We assume, w.l.o.g., that wiui ≤ C for all i.) We give a deterministic 
FPTAS for this problem that for any tolerance ε > 0 estimates the number of solutions within relative error ε in time 
polynomial in the (binary) input size and 1/ε .

Our result Our main result is the following theorem (the base of the logarithms in this paper are all 2 unless otherwise 
specified).

Theorem 1.1. Given a knapsack instance KNAP(w, C, u) with U = maxi ui and ε > 0, there is a deterministic O (
n3 log2 U

ε log n log U
ε )

algorithm that computes an ε-relative error approximation for |KNAP(w, C, u)|.

Relevance to existing literature The field of approximate counting is largely based on Markov Chain Monte Carlo Sampling [1], 
a technique that is inherently randomized, and has had remarkable success, see [2] and the references therein. The first 
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approximation schemes for counting integer knapsack solutions are fully polynomial randomized approximation schemes 
(FPRASs). Given parameters ε > 0 for the error tolerance and 1 > δ > 0 for the failure probability, the FPRAS returns a 
solution which is correct with probability at least 1 − δ, and the running time is required to be polynomial in the (binary) 
input size, 1/ε and in log(1/δ). To the best of our knowledge, the best FPRAS up to date is given by Dyer [3], and is achieved 
by combining dynamic programming with simple rejection sampling. The complexity of the algorithm is O (n5 + n4/ε2), so 
in fact the algorithm is strongly polynomial (see, e.g., [4]), that is, the number of arithmetic operations is polynomial in n
and independent of C , U .

To the best of our knowledge, the currently best (deterministic) FPTAS for this problem is given by Gopalan et al. [5], 
and has complexity O ( n5

ε2 log2 U log W ), where W = ∑
i wiui + C (see also [6]). We note that the real achievement of [6]

is providing an FPTAS for the multidimensional version of the problem. Because of this reason they use a somewhat more 
sophisticated approach than ours, relying on read-once branching programs and insight from Meka and Zuckerman [7].

We note in passing that the first (deterministic) FPTAS for counting 0/1 knapsack solutions (i.e., our problem restricted 
to the case where u = (1, . . . , 1)) is given by Štefankovič et al. [2] and runs in O (n3ε−1 log(n/ε)) time. The currently best 
(deterministic) FPTAS runs in O (n3ε−1 log(1/ε)/ log n) time [8].

Technique used In this paper we give two FPTASs that are based upon formulating the counting problem as a dynamic 
program. Instead of deciding at once how many copies of item i to put in the knapsack, we split the decision into a 
sequence of at most log ui binary sub-decisions concerning (not necessarily all) the bundles of 1, 2, 4, . . . , 2�log ui� copies 
of the item. In order to “translate” this into a dynamic program, we use the idea of what we call binding constraints, as 
explained in detail below. The first FPTAS uses a “primal” DP formulation and approximates it via the recent technique of 
K -approximation sets and functions introduced by [9], which we overview in Section 2.1. The second FPTAS uses a “dual” 
DP formulation and approximates it in a similar way [2] approximate the 0/1 knapsack problem. We overview their solution 
in Section 3.1.

Our contribution While not strongly polynomial, the running time of our solutions are of order n and 1/ε (up to log terms) 
faster than the (randomized, but strongly-polynomial) algorithm of Dyer [3]. The complexity of our solutions is also better 
by factors of n2 and 1/ε (up to log terms) than the (non strongly-polynomial, but deterministic) algorithm of Gopalan 
et al. [5]. Moreover, our algorithms are relatively simple and their analysis is rather elementary. A second contribution is 
our new DP technique – “binding constraints”, which may be of independent interest.

Organization of the paper In Section 2 we present an FPTAS which is based upon a primal DP formulation of the problem. 
Our second FPTAS, based upon a dual DP formulation, is given in Section 3. In this way we showcase that the idea of 
binding constraints is useful for the primal as well as the dual DP formulation.

2. Algorithm via a primal DP formulation

A pseudo-polynomial algorithm is achieved using the following recurrence:

si( j) = ∑mi( j)
k=0 si−1( j − kwi) 2 ≤ i ≤ n, j = 1, . . . , C,

s1( j) = m1( j) + 1 j = 1, . . . , C,
(1)

where function mi : [0, . . . , C]→Z
+ is defined as mi( j) := max{x ∈ Z

+ | x ≤ ui, xwi ≤ j} and returns the maximum number 
of copies of item i that can be placed in a knapsack with capacity j. Here si( j) is the number of integer knapsack solutions 
that use a subset of the items {1, . . . , i} whose weights sum up to at most j. The solution of the counting problem is 
therefore sn(C). The complexity of this pseudo-polynomial algorithm is O (nU C), i.e., exponential in both the (binary) sizes 
of U and C . We call such formulation primal because the range of the functions in (1) is the number of solutions.

In order to get our FPTAS we give in Section 2.2 a more careful DP formulation which is exponential only in the (binary) 
size of C . Before doing so, we briefly overview the technique of K -approximation sets and functions in Section 2.1. We use 
this technique in order to get our first FPTAS.

2.1. K -approximation sets and functions

Halman et al. [9] have introduced the technique of K -approximation sets and functions, and used it to develop an 
FPTAS for a certain stochastic inventory control problem. Halman et al. [10] have applied this tool to develop a framework 
for constructing FPTASs for a rather general class of stochastic dynamic programs. This technique has been used to yield 
FPTASs to various optimization problems, see [10] and the references therein. In this section we provide an overview of the 
technique of K -approximation sets and functions. In the next section we use this tool to construct FPTASs for counting the 
number of solutions of the integer knapsack problem. To simplify the discussion, we modify Halman et al.’s definition of 
the K -approximation function by restricting it to integer-valued nondecreasing functions.

Let K ≥ 1, and let ϕ : {0, . . . , B} → Z+ be an arbitrary function. We say that ϕ̃ : {0, . . . , B} → Z+ is a K -approximation 
function of ϕ if ϕ(x) ≤ ϕ̃(x) ≤ Kϕ(x) for all x = 0, . . . , B . The following property of K -approximation functions is extracted 
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