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Contraction hierarchies are a speed-up technique to improve the performance of shortest-
path computations, which works very well in practice. Despite convincing practical results, 
there is still a lack of theoretical explanation for this behavior.
In this paper, we develop a theoretical framework for studying search space sizes in 
contraction hierarchies. We prove the first bounds on the size of search spaces that depend 
solely on structural parameters of the input graph, that is, they are independent of the edge 
lengths. To achieve this, we establish a connection with the well-studied elimination game. 
Our bounds apply to graphs with treewidth k, and to any minor-closed class of graphs that 
admits small separators. For trees, we show that the maximum search space size can be 
minimized efficiently, and the average size can be approximated efficiently within a factor 
of 2.
We show that, under a worst-case assumption on the edge lengths, our bounds are 
comparable to those in the recent paper “VC-Dimension and Shortest Path Algorithms” 
of Abraham et al. [1], whose analysis depends also on the edge lengths. As a side result, 
we link their notion of highway dimension (a parameter that is conjectured to be small, 
but is unknown for all practical instances) with the notion of pathwidth. This is the first 
relation of highway dimension with a well-known graph parameter.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computing shortest paths in graphs is a fundamental problem in computer science with many applications, the most 
popular being the computation of routes in transportation networks. Though Dijkstra’s algorithm can be used to efficiently 
compute shortest paths in O (n log n + m) time, this is too slow for many applications such as the computation of short-
est paths in continental-size road networks. In the last decades substantial progress on improving this query time has 
been made. So-called speedup-techniques have led to speedups of a factor of one million or more; see [3] for an exten-
sive survey. One particularly successful technique are contraction hierarchies (CH), which are widely used, especially since 
they have proven to be easily adaptable to various settings, such as time-dependent routes [4], multi-modal transportation 
networks [11], routing for electrical vehicles [7], shortest paths with multi-criteria objectives [14], and even fast all-pairs-
shortest path computations [10].
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Contraction hierarchies were introduced by Geisberger et al. [16], who evaluated their performance experimentally. The 
main idea of contraction hierarchies is the iterative contraction of nodes, where the contraction of a node v removes v from 
the graph and possibly inserts some shortcut edges between neighbors of v in order to preserve shortest-path distances 
(we present a brief description of contraction hierarchies in Section 2.2).

A common way to theoretically assess the performance of speed-up techniques is the maximum search space size, i.e., 
the maximum number of vertices a query has to process [6,5]. It turns out that the contraction hierarchy and also its per-
formance in answering shortest-path queries depend strongly on the contraction order of the nodes. Finding a good node 
ordering that allows for fast shortest-path computations thus is an important problem. Practical implementations, such 
as the one by Geisberger et al. [16] employ heuristics for which no provable guarantees are known. Previous theoretical 
expositions rather focus on minimizing the size of the contraction hierarchy [6,21], i.e., the number of edges that are in-
serted during the contractions. In particular, it is known that minimizing the size of a contraction hierarchy is NP-complete. 
The only work providing provable performance guarantees for shortest-path computations in contraction hierarches, we are 
aware of, is the work of Abraham et al. [1,2]. They introduce the notion of highway dimension, a parameter that is con-
jectured to be small in real-world road networks, and prove sublinear query times under this assumption. However, the 
highway dimension of real-world instances is unknown, and may change as the length function changes. By contrast, we 
focus on providing bounds that rely on purely structural parameters of the graph, such as bounded treewidth or excluding 
a fixed minor. Our algorithms thus apply to classes of graphs that are defined purely by structural criteria, and our upper 
bounds are agnostic to the length function.

We note that theoretical results with better query times [28,13] exist, some of them even using similar techniques. They 
are, however, far from being practical. By contrast, our theoretical bounds apply to a widely used speed-up technique. It 
is also worth noting that recursive graph separation has been used as a heuristic in practical approaches [27], although, 
without providing theoretical guarantees. There have also been approaches for exploiting small treewidth for computing 
shortest paths. Chaudhuri and Zaroliagis [9] describe a data structure for answering shortest-path queries on graphs of 
small treewidth, which directly works on a tree decomposition. Planken et al. [23] apply a separator-based technique to 
speed up all-pairs-shortest-path computation in graphs of small treewidth. Recently, Dibbelt et al. [12] have followed our 
approach and demonstrated experimentally that it can be used for efficient customizable route planning. Very recently Funke 
and Storandt [15] have claimed provable guarantees on the search space for a randomized preprocessing of contraction 
hierarchies. However, they impose restrictions on the graph structure and the metric, and their query algorithm resembles 
a multi-level Dijsktra search rather than the query of a contraction hierarchy.

Contribution and outline We develop a theoretical framework for studying search-space sizes in contraction hierarchies. Due 
to the iterative definition of an algorithmic contraction hierarchy, it seems quite difficult to prove theoretical bounds, as this 
appears to inherently require arguments that are based on a local construction only. We overcome this drawback by giving 
a global description of the contraction hierarchy associated with a node ordering in Section 3.

Afterwards, in Section 4, we establish a connection between contraction hierarchies and two classical problems that 
have been widely studied. Namely, so-called filled graphs, which were introduced by Parter [22] in his analysis of Gaussian 
elimination, and elimination trees, which were introduced by Schreiber [26] for Gaussian elimination on sparse matrices. 
For trees, these connections in particular imply efficient algorithms that minimize the maximum search space size and 
approximate the average search space size within a factor of 2. This contrasts corresponding hardness results for other 
speed-up techniques, such as arcflags, where even processing trees optimally is NP-complete [5].

In Section 5, we show that nested dissection, a technique for finding elimination trees of small height, can be applied to 
construct orders α with provable bounds on the maximum search space size. For graphs of treewidth k and for graphs that 
admit small separators and exclude a fixed minor, we obtain maximum search space size O (k log n) and O (

√
n), respectively.

Finally, we compare our results with the results of Abraham et al. [1,2] in Section 7. If the length function is such 
that the highway dimension is maximal, then our results are comparable to theirs. However, our approach neither requires 
small maximum degree, nor does it depend on the diameter of the graph, and thus applies to a larger class of graphs. As 
a side result, we find an unanticipated and novel connection between highway dimension and pathwidth. This is, to our 
knowledge, the first relation between highway dimension and a more widely known graph parameter.

2. Preliminaries

In this section we collect preliminary notation and terminology that is used throughout the paper.

2.1. Graphs, paths, and lengths

A graph G = (V , E) consists of a set V of vertices and an edge set E , where each edge e ∈ E connects two vertices in V . 
In a directed graph, we use uv to denote the edge with source u and target v . In an undirected graph, we do not distinguish 
the source and target of an edge, and uv and vu denote the same edge. All graphs we consider are simple, i.e., they contain 
neither parallel edges nor loops. A weighted graph G = (V , E, len) is a graph with a weight function len : E → R≥0. In case 
of ambiguity, we use a subscript to indicate to which graph a weight function refers, e.g., lenG for the weight function of 
graph G .
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