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a  b  s  t  r  a  c  t

Particle  swarm  optimization  (PSO)  is  a population-based  stochastic  optimization  algorithm  motivated
by  intelligent  collective  behavior  of  some  animals  such  as flocks  of  birds  or schools  of  fish.  The  most
important  features  of  the  PSO  are  easy  implementation  and  few  adjustable  parameters.  A  novel  PSO
method  called  LHNPSO,  with  low-discrepancy  sequence  initialized  particles  and  high-order  (1/�2) non-
linear  time-varying  inertia  weight  and  constant  acceleration  coefficients,  is  proposed  in  this  paper.  The
initial  population  particles  are  generated  by using  the Halton  sequence  to  fill  the search  space  efficiently.
Nonlinear  functions  with  orders  varied  within  big  ranges  are  employed  to  adjust  the  inertial  weight,
cognitive  and social  parameters.  Based  on the  sensitivity  analysis  of  PSO  performance  to the changes
of the  orders  of  these  nonlinear  functions,  1/�2 order  nonlinear  function  is selected  to  adjust  the  time-
varying  inertia  weight  and  the two  acceleration  coefficients  are  set  to  be constants.  A set  of well-known
benchmark  optimization  problems  is then  used  to investigate  the performance  of  the  proposed  LHNPSO
algorithm  and facilitate  the comparison  with  other  three  types  of PSO  algorithms.  The  results  show  that
the easily  implemented  LHNPSO  can  converge  faster  and  give  a  much  more  accurate  final  solution  for  a
variety  of  benchmark  test  functions.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

With the inspiration motived by the research results on the
modeling and the simulations of the behavior reflected in flocks
of birds, Kennedy and Eberhart proposed the particle swarm
optimization (PSO) algorithm [1]. The algorithm is a stochastic
population-based method and is regarded as a global search strat-
egy. In the PSO, particles move through the problem space with a
specified velocity in search of optimal solution. Each particle main-
tains a memory which helps it keep the track of its previous best
position and the global best position. The most important advan-
tages of PSO are that it is easy to implement and has few parameters
to adjust [2]. Commonly, the adjustable parameters are inertial
weight, cognitive and social parameters.

PSO algorithm has attracted considerable attention and has been
used in many research areas over the past decades [3–11]. Gener-
ally, convergence speed and ability to find global optima are basic
criteria for assessing the performance of an optimization method.
A large number of improved PSO algorithms [12–22] have been
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proposed to achieve the two goals, that is, faster convergence speed
and avoiding premature or local optima.

The convergence speed of a PSO algorithm is dependent on the
inertia weight and two acceleration coefficients. Random [23], lin-
ear time-varying [24], nonlinear time-varying [25,26] and adaptive
strategies [27–29] have been used to adjust the inertia weight
to improve the convergence speed. A review and summary of
various inertia weight modification mechanisms reported in lit-
erature can be found in reference [2]. Nonlinear time-varying and
adaptive inertia weights normally have better performance than
others. Moreover, the principle and implementation of nonlin-
early decreasing inertia weights are simpler than those of adaptive
ones. Currently, third and less order nonlinear functions have been
investigated extensively for adjusting inertia weight, however, the
performance of higher order nonlinear time-varying weight needs
to be further studied.

The concept for initializing the particles of most PSO algorithms
is same as that for generating random numbers in the tradi-
tional Monte-Carlo simulation method which could be regarded as
the original stochastic optimization method. In contrast to tradi-
tional Monte-Carlo methods using pseudo random numbers, the
quasi-Monte Carlo method produces deterministic sequences of
well-chosen points that provide the best-possible spread in the
change ranges of variables [30]. These deterministic sequences are
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often referred to as low-discrepancy sequences filling the sample
area efficiently and uniformly [31], which have been successfully
used to solve globally optimal problems [30–33].

The major objective of this paper is to propose an improved
PSO algorithm to benefit by the advantages of high-order non-
linear time-varying inertia weight and low-discrepancy sequence.
This paper is organized as follows. Section 2 reviews the clas-
sical PSO and some commonly accepted improved version of
PSO. In Section 3, different-order nonlinear functions, varying from
1/18 to 9, are tested to adjust the inertia weight and two  accel-
eration coefficients, and the corresponding parametric studies
on the orders are also implemented. The improved PSO with
adjusted coefficients are further test with different population
sizes. Section 4 presents an improved PSO method with low-
discrepancy sequence initialized particles and high-order (1/�2)
nonlinear dynamic varying inertia weight (LHNPSO), and exper-
imental results by using well-known benchmark test functions.
Section 5 gives a brief conclusion about this study.

2. Review of classical PSO and its variants

2.1. PSO

PSO algorithm starts with a population of particles randomly
initialized in the search space. Each particle represents a potential
solution. The algorithm searches the optimal solution by moving
the positions of particles in the search space. The position and
velocity of the ith particle are represented by n-dimensional vector
xi = (xi1, xi2, . . .,  xin) and vi = (vi1, vi2, . . .,  vin), respectively. The par-
ticle moves its current position toward the global optimum based
on two items, that is, the best position encountered by this parti-
cle and the best position visited by the whole swarm. The velocity
and position of the particle are updated according to the following
formulations

vi(k + 1) = wvi(k) + c1r1 ◦ (xPb
i − xi(k)) + c2r2 ◦ (xGb − xi(k)) (1)

xi(k + 1) = xi(k) + vi(k + 1) (2)

where k is the iteration number, vi(k) denotes the velocity of the ith
particle at the kth iteration, xi(k) represents the position vector of
the ith particle at the kth iteration, vector xPb

i
is the best position vis-

ited by the ith particle, vector xGb is the global best location found by
the whole swarm until the current iteration. w is the inertia weight
controlling the influence of the previous velocity on the current
one. In this paper, the maximum velocity is 20% of the search range
divided by the size of particles. c1 is the cognitive parameter, and c2
is the social parameter. The two acceleration coefficients and repre-
sent dependent settings which indicate the degree of confidence in
the best solution found by the individual particle and by the entire
swam,  respectively. r1 and r2 are two random vectors consist of
random numbers uniformly distributed in the interval [0, 1]. The
symbol ◦ in Eq. (1) denotes the Hadamard product.

2.2. LPSO and LPSO-TVAC

The global convergence of a PSO algorithm is dependent on the
degree of local/global exploration controlled by the two  acceler-
ation coefficients, meanwhile, the relative rate of convergence is
affected by the inertia weight parameter. Research results have
shown that for a fixed/constant inertia value there is a significant
reduction in the algorithm convergent rate. In the earlier optimiza-
tion stage, a large inertia weight is required in order to search the
design space thoroughly. When the most promising areas of the
design space have been discovered and the convergence rate starts
to slow down, the inertia weight should be reduced, in order for the
particles’ momentum to decrease allowing them to concentrate in

the best design areas. Therefore, Shi and Eberhart [34] proposed an
improved PSO algorithm with a linear time-dependent value of the
inertia weight (LPSO) to accomplish the aforementioned strategy

w(k + 1) = wmax − wmax − wmin

kmax
· k (3)

where k is the iteration number staring from iteration zero; kmax is
the maximum number of allowable iteration; wmax and wmin are the
maximum and minimum values of the inertia weight, respectively.
Usually the value of the inertia weight varies between 0.4 and 0.9.

Similarly, the PSO algorithm with linearly decreasing inertia
weight and time-varying acceleration coefficients (LPSO-TVAC) has
been proposed by Ratnaweera et al. [35]. In the early stage, a large
c1 and small c2 allow the particles to move around the whole search
space instead of moving toward the population best. In the latter
stage, a small c1 and a large c2 allow the particles to converge into
the global optimum. c1 and c2 are computed by

c1(k + 1) = c1i − c1i − c1f

kmax
· k (4)

c2(k + 1) = c2i − c2i − c2f

kmax
· k (5)

where c1i, c1f, c2i and c2f are initial and final values of the cognitive
and social parameters, respectively. The best reported results were
achieved when c1i = c2f = 2.5 and c1f = c2i = 0.5 [20].

Although numerous improved PSO algorithms have been pre-
sented and applied in many research areas, solving optimization
problems with high accuracy and rapid convergence speed is
still an important task. Both LPSO and LPSO-TVAC achieve bet-
ter convergence and accuracy than classical PSO, and also keep
the developed formulations structurally simple and easily under-
standable, making these variants become handy tools to solve
optimization problems in a wide range of subjects. In other words,
these two  variants preserve one of the major merits of PSO, easy
implementation. Because of this, in this paper, we manage to fur-
ther improve PSO based on the ideas from LPSO and LPSO-TVAC,
which will be explained at a greater extent in the next section. PSO,
LPSO and LPSO-TVAC are all adopted as the reference methods.

3. Sensitivity analysis of time-varying inertia weight and
acceleration coefficients to the order of nonlinear functions

In contrast to linear time-varying inertia weight and acceler-
ation coefficients, in this study, nonlinear functions are proposed
to adjust them. Non-linear high-order function has advantage to
update PSO parameters. For instance, a faster reduction of the iner-
tia weight can be achieved in the early stage, which will increase
the rate of convergence. In the surrounding area of the optimum,
the reduction of the inertia weight becomes slower, which will be
helpful for capturing the solution.

w(k + 1) = wmax − (wmax − wmin)
(

k

kmax

)˛

(6)

c1(k + 1) = c1i − (c1i − c1f )
(

k

kmax

)ˇ

(7)

c2(k + 1) = c2i − (c2i − c2f )
(

k

kmax

)�

(8)

Actually, constant and linear time-varying parameters are spe-
cial cases of what are described by the above formulations.
Inertia weight, cognitive and social parameters are constants when

 ̨ =  ̌ = � = 0, and they are linearly time-varying parameters when
 ̨ =  ̌ = � = 1.

To investigate the influences produced by ˛,  ̌ and � on the per-
formance of PSO, the values taken for them are listed in Table 1.
In literature, commonly, a set of well-known nonlinear benchmark
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