
Please cite this article in press as: Haberleitner M., Jüttler B. Isogeometric segmentation: Construction of cutting surfaces. Computer-Aided Design (2017),
http://dx.doi.org/10.1016/j.cad.2017.05.007.

Computer-Aided Design ( ) –

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Isogeometric segmentation: Construction of cutting surfaces✩

Michael Haberleitner *, Bert Jüttler
Altenberger Str. 69, 4040 Linz, Institute of Applied Geometry, Johannes Kepler Universität Linz, Austria

a r t i c l e i n f o

Keywords:
Isogeometric analysis
Segmentation
Trimmed surface fitting
Implicit guiding surface
Parameterization
Collision avoidance

a b s t r a c t

The objective of Isogeometric Segmentation is to generate a decomposition of a solid, given in boundary
representation, into a collection of a relatively small number of base solids, which can easily be subdivided
into topological hexahedra. This can be achieved by repeatedly splitting the solid. In each splitting step,
one chooses a cutting loop, which is a cycle of curves around the boundary of the solid, and constructs
a cutting surface that splits the solid into two simpler ones. When only hexahedra or pre-defined base
solids are left this process terminates.

The construction of the cutting surface must ensure that two essential properties are fulfilled: the
boundary curves of the surface interpolate the previously constructed cutting loop and the surface neither
intersects itself nor the boundary of the solid. A novel method for generating the cutting surface is
presented in this paper. The method combines two steps: First we generate an implicit guiding surface,
which is subsequently approximated by a trimmed spline surface in the second step.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Since its introduction by T.J.R. Hughes et al. in 2005 [1], the
framework of isogeometric analysis has attracted rapidly growing
attention from the numerical analysis and the geometric model-
ing communities. The underlying idea, namely to combine finite
element analysis with geometric design by reusing the same basis
functions, has led to significant improvements of the interaction
between the representations used in Computer-Aided Design and
in Numerical Simulation, see [2] for more information. The current
state-of-the-art in this field is captured by the two recent special
issues of influential journals [3,4].

With the growing interest in isogeometric analysis, it was soon
noticed that the realization of its potential advantages requires
to address new challenging problems. A prominent example is
the need to develop techniques for creating NURBS-based domain
parameterizations from boundary-represented CAD data, as the
resulting NURBS representations provide the basic description of
geometric data for isogeometric analysis, cf. [5].

These parameterizations may be classified into single- and
multi-patch representations. The construction of single patch
spline models from boundary data has been addressed by nu-
merous publications. We briefly mention some of them: Gravesen
et al. address the challenge of creating a regular single-patch
domain parameterization from boundary data [6]. A method for
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volumetric parameterization and trivariate B-spline fitting using
harmonic mappings has been described by Martin et al. [7] for ob-
jects of cylindrical topology. Zhang et al. [8] describe a construction
of a solid T-spline parameterization for genus zero objects from
triangulated boundary data. This method has later been extended
to solids possessing an arbitrary topological genus [9].

Although it has some benefits, the use of a single patch imposes
severe constraints on the topology of the domain. Algorithms for
creating multi-patch representations, that provide increased flex-
ibility, are therefore of vital interest. Typically, such algorithms
consist of two steps: First the domain is subdivided into a collection
of topological hexahedra. Second, one constructs a spline parame-
terization for each of these blocks. In order to benefit from the po-
tential advantages of isogeometric analysis, one should construct
segmentations into relatively few hexahedral patches. This is quite
different from the usual approach to hexahedral mesh generation,
which has been studied in the context of the classical finite element
method, see e.g. [10] and the references cited therein.

Parameterization techniques for multi-patch domains have
been studied by Xu et al. [11] using variational methods. A com-
binatorial approach to planar multi-patch domains, which is based
on a complete enumeration of the possible patch layouts, has been
described recently in [12]. Suitable spline spaces for multi-patch
domains have been analyzed in [13,14].

The problem of decomposing a domain into a small number of
topological hexahedra, which are suitable for spline parameteri-
zations, has been called the isogeometric segmentation problem
in [15]. One may distinguish between two approaches:

The first one uses splines on polycube domains, see e.g. [16,17].
The parameterization algorithm first generates a polycube domain

http://dx.doi.org/10.1016/j.cad.2017.05.007
0010-4485/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cad.2017.05.007
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:michael.haberleitner@jku.at
mailto:bert.juettler@jku.at
http://dx.doi.org/10.1016/j.cad.2017.05.007


Please cite this article in press as: Haberleitner M., Jüttler B. Isogeometric segmentation: Construction of cutting surfaces. Computer-Aided Design (2017),
http://dx.doi.org/10.1016/j.cad.2017.05.007.

2 M. Haberleitner, B. Jüttler / Computer-Aided Design ( ) –

Fig. 1. From left to right: Vase-shaped object with non-planar faces seen from two different viewing directions, implicit guiding surface, parameterized surface patch, and
its automatically created parameter domain.

(i.e., a collection of cubes) that resembles the given solid object,
and constructs a parameterization by considering a deformation
that transforms the domain into the solid. Al Akhras et al. combine
polycubes with pants decomposition of the boundary surface to
subdivide the given solid into a collection of cuboids [18]. Clearly,
the polycube-based approach is quite powerful but has some diffi-
culties when dealing with features (sharp edges) on the boundary.
This problem has been addressed recently in [19].

The second approach, which has been established in a series of
papers [15,20,21], is based on iterated splitting of the initial solid
using cutting surfaces. This surface is obtained from a cutting loop,
which is a cycle of curves on the solid’s boundary surface.While the
selection of the loop and the construction of its curve segments is
nowwell understood, the actual construction of the cutting surface
has not yet been investigated.

The current paper focuses on this problem,which is an essential
ingredient of the isogeometric segmentation pipeline described in
[22]. Given a three-dimensional solid in boundary representation
as a collection of trimmed NURBS surfaces, and a cutting loop,
we generate a representation of the cutting surface as a trimmed
NURBS surface patch. Its boundary interpolates the given cutting
loop, but its interior must not intersect the boundary of the solid.

Two different techniques will be combined in order to solve
this problem. First we construct an implicit spline surface, that
roughly interpolates the cutting loop and stays away from the
other parts of the solid’s boundary. This surface is obtained using
methods for implicit spline surface fitting. In the second part we
use techniques for trimmed spline surface fitting to obtain a cutting
surface that simultaneously approximates the given cutting loop
in the boundary and the implicit guiding surface in the interior.

Implicit curves and surfaces are a well-established tool for
geometry reconstruction [23–26]. More recently, Wang et al. use
implicit PHT-splines to reconstruct curves and surfaces [27], while
Pan et al. [28] employ a low-rank tensor approximation technique
to reduce the complexity of the required computer memory.

Spline surface fitting addresses the problem of geometry re-
construction using parametric curves and surfaces, see the surveys
[29,30] for more information. In particular, techniques for spline
surface fitting to implicit surfaces are of interest. Related work
includes a paper by Wurm et al. [31], who find a tensor-product
spline surface representation of a given algebraic surface by mini-
mizing a non-linear objective function.

The remainder of this article consists of four major parts. First
we give a detailed explanation of the cutting problem and in-
troduce the notions that will be used throughout the paper in
Section 2. We then formulate a suitable constrained optimization
problem in Section 3, which allows us to obtain an implicit guiding
surface. As the next step we discuss the construction of a paramet-
ric representation of the cutting surface in Section 4. Finally we
present several computational results that illustrate our approach
in Section 5.

Fig. 2. Left: A 2D solid with five facets (curve segments) and one highlighted
ridge (vertex). Right: A 3D solid with five facets (trimmed surface patches) and two
highlighted ridges (vertex and edge).

Fig. 1 visualizes the whole procedure: The left two pictures
show a three-dimensional solid and a given cutting loop,1 cf.
Section 2. The picture in the center depicts an implicit guiding
surface and the last two pictures show the parameterized cutting
surface and its automatically generated trimming-loop.

2. Preliminaries

We consider the problem of decomposing a d-dimensional sim-
ply connected domain (a solid object), which is given in boundary
representation into two smaller simply connected domains for d =

2, 3. More precisely we are given a list of n facets

Fi : Ωi ⊂ [0, 1]d−1
→ Rd for i = 1, . . . , n,

such that
⋃

iFi(Ωi) is the boundary of a solid object S in Rd. We
distinguish between a parameterized facet Fi and its geometric
locus Fi = Fi(Ωi). For simplicity we use the notion facet for both of
them.

In the two-dimensional case (d = 2), the parameter domains
Ωi are intervals and the associated facets Fi are simply segments of
planar curves. The solid S is the planar domain that is bounded by
these segments.

A three-dimensional solid (d = 3) is a domain in R3 that
is bounded by surface patches Fi. More precisely, one considers
trimmed surface patches, as the parameter domains Ωi can be
general solids in the plane, i.e., planar domains which are bounded
by a curve polygon (see Fig. 2).

The non-empty intersections Fi ∩ Fj ⊂ Rd for i ̸= j will be
called ridges. In the planar case (d = 2), the ridges are the start-
and end-points of the boundary curves and therefore vertices. The
ridges can be either edges or vertices for dimension d = 3, see
Fig. 2.

1 Note that the cutting loop in this example does not induce a meaningful
segmentation of the solid. Itwas artificially chosen in order to illustrate the required
properties of cutting surfaces. This comment also applies to the cutting data in
Figs. 5, 6 and 12. In contrast, real cutting loops have been used in Figs. 13 and 15.
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