
Computer-Aided Design () –

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Array-based, parallel hierarchical mesh refinement algorithms for
unstructured meshes✩

Navamita Ray a,∗, Iulian Grindeanu a, Xinglin Zhao b, Vijay Mahadevan a, Xiangmin Jiao b

a Mathematics and Computer Science, Argonne National Laboratory, Argonne, IL 60439, USA
b Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA

a r t i c l e i n f o

Keywords:
Uniform mesh refinement
Hierarchical meshes
High-order surface reconstruction
Parallel computation
Half-facet

a b s t r a c t

In this paper, we describe an array-based hierarchical mesh refinement capability through uniform
refinement of unstructured meshes for efficient solution of PDE’s using finite element methods and
multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate
the nested hierarchies from an initial coarse mesh that can be used for a variety of purposes such as in
multigrid solvers/preconditioners, to do solution convergence and verification studies and to improve
overall parallel efficiency by decreasing I/O bandwidth requirements (by loading smaller meshes and in-
memory refinement). We also describe a high-order boundary reconstruction capability that can be used
to project the new points after refinement using high-order approximations instead of linear projection
in order to minimize and provide more control on geometrical errors introduced by curved boundaries.

The capability is developed under the parallel unstructured mesh framework ‘‘Mesh Oriented
dAtaBase’’ (MOAB Tautges et al. (2004)). We describe the underlying data structures and algorithms to
generate such hierarchies in parallel and present numerical results for computational efficiency and effect
on mesh quality. We also present results to demonstrate the applicability of the developed capability to
study convergence properties of different point projection schemes for various mesh hierarchies and to a
multigrid finite-element solver for elliptic problems.

Published by Elsevier Ltd.

1. Introduction

In the numerical solution of complex partial differential equa-
tions (PDE’s) using finite element methods for unstructured
meshes, the two most computationally intensive steps are mesh
generation and linear solvers. An initial coarse mesh representing
the computational domain might not be of sufficient resolution to
get meaningful results out of the discretizations for physical scales
that might be present. As a result, the capability to refine a mesh
is an essential part of any simulation process. Additionally, it is
well known that multi-level methods such as geometric multigrid
methods (GMG) can theoretically deliver optimal time complexity
for solving sparse linear systems from PDE discretizations. Thus,
it would be advantageous to use nested multi-level (i.e., hierar-
chical) meshes to achieve high-degree of verifiable accuracy and

✩ This paper has been recommended for acceptance by Franck Ledoux and
Katherine.
∗ Corresponding author.

E-mail address: nray@mcs.anl.gov (N. Ray).

computational efficiency, especially in the context of large-scale
parallel computing, as both the number of processors and themesh
resolution increase. Uniform mesh refinement (UMR) provides a
simple and efficient way to generate such hierarchies via succes-
sive refinement of the mesh at a previous level. It also provides a
natural hierarchy via parent and child type of relationship between
entities of meshes at different levels that enable queries that sup-
port computation of projection operators between levels. While
UMR is a relatively simple process, it is by no means trivial espe-
cially in a parallel setting. Notable challenges includemaintenance
ofmesh quality,multi-level andmulti-degree refinement, and data
structure and software design.

In this paper, we develop parallel uniform refinement-based al-
gorithms to generate multi-degree, multi-dimensional and multi-
level meshes from coarse unstructured meshes. The generated
mesh hierarchies can be used for a variety of purposes such as con-
vergence studies, multilevel methods, generating large meshes in
parallel to overcome IO bottlenecks, etc. While the multi-degree
refinement allows achieving uniformly greater resolution faster,
themulti-dimensional refinement preserves thehierarchy over ex-
plicit lower dimensional entities such as curves in surfaces, or sur-
faces embedded in volumes.

http://dx.doi.org/10.1016/j.cad.2016.07.011
0010-4485/Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.cad.2016.07.011
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:nray@mcs.anl.gov
http://dx.doi.org/10.1016/j.cad.2016.07.011

2 N. Ray et al. / Computer-Aided Design () –

The key contributions of the paper include: (1) develop-
ing a template-based refinement strategy for subdividing each
entity into smaller entities to support multi-degree refinement
patterns, (2) extending the array-based half-facet (AHF) data struc-
ture [1] to support hierarchy generation and efficient mesh traver-
sals, (3) developing efficient parallel communication strategies
to resolve shared entities along processor boundaries after re-
finement, and (4) link with various high-order point projection
strategies based high-order boundary reconstruction. We develop
the capability under the parallel array-based unstructured mesh
framework ‘‘Mesh Oriented dAtaBase’’ a.k.a MOAB [2]. The devel-
oped mesh hierarchy generation supports 1D (edges), 2D (trian-
gles, quadrilaterals), and 3D (tetrahedral, hexahedral) meshes and
mixed-dimensional meshes. We present results to demonstrate
the computational efficiency, memory requirements and effect on
mesh quality due to template-based UMR. We also demonstrate
the effectiveness of the hierarchical meshes through a multigrid
application.

A key aspect of the refinement algorithm is the positioning of
the new vertices as entities are refined and we currently use a lin-
ear point projection scheme. However, using linear point projec-
tion scheme for the new vertices compromises the accuracy of the
geometry and in turn that of the finite element solver. To address
this issue,wemake use of a recently added discrete geometrymod-
ule in MOAB that provides high-order point projection schemes.
The discrete geometry module provides high-order boundary re-
construction strategies that are based on weighted averaging of
local polynomial fittings as described in [3,4]. We present conver-
gence studies of the geometrical errors using different point pro-
jection schemes for various mesh hierarchies.

This work is an extension of the conference paper [5] and im-
proves the original paper on two aspects. First, we introduce an al-
ternative approach based on a combinatorial matching algorithm
to resolve shared interface entities. Secondly, we include a high-
order boundary reconstruction capability to project the newpoints
after refinement using high-order approximations instead of lin-
ear projection so that geometrical errors introduced by curved
boundaries can beminimized. In [6], a parallel hierarchical tetrahe-
dral–octahedral subdivision refinement scheme is described. The
proposed scheme was specific to tetrahedral meshes whereas our
framework is applicable to a larger set of entity types. Also, the re-
finement template in [6] leads to a significant jump in the number
of entities comparing to using lower-degrees of refinementswhere
the mesh size increase is more graded. Finally, the parallel model
follows a master–slave communication model whereas we follow
a purely distributed model with mesh partitioning along with var-
ious asynchronous communication strategies to overlap commu-
nication with computation for latency hiding. Our template-based
approach is further extended in [7] to support both non-conformal
and conformal adaptive refinement while using an array-based
tree-like structure for storing the hierarchies. In [8–10], various
strategies for adaptive mesh refinement for both unstructured and
structured meshes are provided. Our approach, though still in pre-
liminary stages, differs significantly. It first of all allows storing
the hierarchy information and subsequently support various in-
ter and intra level mesh traversal queries are required by multi-
level methods. Secondly, unstructured meshes and as a result
complex geometries can be directly supported without posing any
constraint on the geometry. We refer to [11] for an overview of the
existing adaptive strategies as detailed comparison is beyond the
scope of this work.

The remainder of the paper is organized as follows. Section 2 re-
views some background knowledge and related mesh data struc-
tures. Section 3 describes the refinement templates, underlying
mesh hierarchy storage and extended half-facet data structures.
Section 4 describes the algorithms for the parallel communication

and mesh hierarchy generation. Section 5 presents numerical re-
sults for computational efficiency,memory requirements, effect on
mesh quality, convergence properties of different point projection
schemes, and an example of multigrid solver. Section 6 concludes
the paper with a discussion.

2. Related work and background

2.1. Background

Mesh data structures are fundamental to meshing algorithms
and mesh-based numerical methods. The underlying data struc-
ture strongly influences the overall performance of the algorithms
or simulations, since it is used to perform all the mesh-based com-
binatorial operations and as a result has been investigated since the
inception ofmesh generation and computational geometry.We re-
view some terminology before describing our data structures and
mesh frameworks. We say a mesh is a manifold or non-manifold
if its geometric realization is a manifold or non-manifold, respec-
tively. In a d-dimensional mesh, we refer to the d-dimensional en-
tities as elements, and refer to the (d−1)-dimensional sub-entities
as its facets. Each facet in a 2-D or 3-Dmesh has an orientationwith
respect to the containing element. For example, each edge of a tri-
angle has a direction, and all the edges form an oriented loop. Thus,
it makes sense to call the facets half-facets. Each facet may have
multiple incident elements, especially for non-manifold entities.
We refer to all such half-facets as sibling half-facets. A mesh is said
to be conformal if the pairwise intersection of any two entities is
either another entity (lower-dimensional) or is empty. In this pa-
per, we consider only conformal meshes, which may be manifold
or non-manifold. In some engineering applications, especially in
coupled or multi-component systems, the domain of interest may
be composed of a union of topologically 1-D, 2-D, and 3-D objects,
such as amixture of cables, thin-shells, and solids.We refer to such
a domain and its mesh as mixed-dimensional. We refer to a subset
of the mesh corresponding to a 1-D, 2-D, and 3-D object in the do-
main as a sub-mesh.

2.1.1. Array-based half-facet (AHF) data structure
There are a number of mesh data structures such as entity-

based, boundary representations, corner table, radial-edge,winged,
half-edge/face, incidence graphs, etc., that are used for mesh rep-
resentation and queries. The two data structures that are relevant
in our context are the half-edge and half-face data structures. The
half-edge data structure is for 2D and surface meshes. It uses edge
as the core object where the edge within each face is called a di-
rected or half-edge. Typical implementations (e.g., CGAL [12,13],
OpenMesh [14] and Surface_Mesh [15]) store mappings from each
half-edge to its opposite half-edge, its previous and next half-edge
within its face, its vertices, its incident face, as well as the map-
ping from each vertex and each face to an incident half-edge. More
compact representations, such as [16], can be obtained by stor-
ing only the mapping between opposite half-edge, optionally the
mapping from each vertex to an incident half-edge, along with the
element connectivity. The half-edge concept was generalized to
half-faces (e.g., [16,17]) for volume meshes where half-faces re-
fer to the oriented faces within a cell. These basic half-edge and
half-face data structures are simple and are restricted to oriented,
manifold meshes (with or without boundary) in 2-D and 3-D, re-
spectively.

In [1], an efficient, compact and general array-based half-facet
(AHF) mesh data structure with support for mixed-dimensional
meshes, which may be non-manifold and/or non-oriented was
proposed. The core object of AHF is half-facet as defined previously
and is represented as an implicit entity. The concept of sibling
half-facets unifies the half-vertex, half-edge, and half-face data

Download English Version:

https://daneshyari.com/en/article/4952622

Download Persian Version:

https://daneshyari.com/article/4952622

Daneshyari.com

https://daneshyari.com/en/article/4952622
https://daneshyari.com/article/4952622
https://daneshyari.com

