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A Bézier control polygon is not appropriate to control a Pythagorean hodograph curve 
since it has redundant degrees of freedom. So we propose an alternative, which is the 
rectifying control polygon. A rectifying control polygon of a PH curve has the same degrees 
of freedom as the PH curve. It interpolates the end points of the PH curve, but not the end 
tangents. Most of all, it has the same arc length as the PH curve. In this paper, we present 
the method to compute the rectifying control polygon from the Bézier control polygon 
of the PH curve. We also present the procedure to compute the PH curves from a given 
rectifying control polygon. For the development of these algorithms, we employ the Gauss–
Legendre quadrature method and the Bernstein–Vandermonde linear system.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Pythagorean hodograph (PH) curves, introduced by Farouki and Sakkalis (1990), are a special type of polynomial curves, 
which have the unique property that their parametric speed functions are also polynomials of the curve parameter. The PH 
property enables us to compute the arc length of the curve exactly without numerical integration. The curve construction 
problem with prescribed arc length has been studied by Roulier (1993), Roulier and Piper (1996) using Bézier curves or even 
general parametric curves. Their methods rely on iterative numerical computations. Similar problems using PH curves were 
solved by Farouki (2016), Huard et al. (2014) in much simpler and elegant ways because PH curves have explicit expression 
of the arc length. Another important advantage of PH curves is that their offset curves are rational curves. So we do not 
need to rely on approximation algorithms for offset computation. One may consult Farouki (2007) for more details on PH 
curves from algebraic frameworks to practical applications.

Since PH curves are polynomial curves, they can be expressed as Bézier curves. However, not all Bézier curves are PH 
curves. Recently, Farouki et al. (2015) suggest the method to determine whether a given Bézier curve is in fact a PH curve, 
and to compute the parameters of the PH curve. They also presented the method of local modification of quintic PH spline 
curve while maintaining the PH property (Farouki et al., 2016). Since the Bézier control points of a PH curve should satisfy 
certain algebraic constraints, we cannot move a Bézier control point arbitrarily while preserving the PH condition. Actually 
a PH curve has fewer degrees of freedom than a Bézier curve of the same degree has. This situation suggests that a Bézier 
control polygon is not appropriate to “control” a PH curve. So we propose an alternative method to control PH curves, which 
is the rectifying control polygon.
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A rectifying control polygon of a PH curve will be defined as a polygon which satisfies the properties: (1) it has the same 
degrees of freedom as the PH curve has, (2) it interpolates both end points of the PH curve, and (3) the sum of the lengths 
of polygon segments is the same as the length of the PH curve. The third condition above is the rectifying property of this 
polygon.

To achieve the rectifying property, we will utilize the Gauss–Legendre quadrature for the computation of the arc length 
of a PH curve. The Gauss–Legendre quadrature with n nodes produces the exact integral of a polynomial of degree 2n − 1. 
We can construct a rectifying control polygon of a PH curve by attaching the tangent vectors of the PH curve, evaluated 
at the Gauss–Legendre nodes and scaled by the Gauss–Legendre weights. One may find the details of the Gauss–Legendre 
quadrature in basic texts of numerical analysis such as Atkinson (1989), Atkinson and Han (2004).

The rest of the paper is structured as follows. In Section 2, we summarize the fundamental properties of PH curves and 
the Gauss–Legendre quadrature, then fix the notations. Section 3 is devoted to the construction of a rectifying polygon from 
a given PH curve. We here prove that the vertices of the rectifying polygon can be obtained by the convex combinations of 
the Bézier control points of the PH curve. In Section 4, we solve the inverse problems of Section 3. We construct PH curves 
from a given rectifying control polygon. In fact, there are multiple instances of PH curves for a given rectifying control 
polygon. We describe the procedure to compute these PH curves. This procedure can be formulated as a linear system 
whose coefficient is the Bernstein–Vandermonde matrix evaluated at the Gauss–Legendre nodes. Finally we conclude the 
paper in Section 5.

2. Preliminaries

When we deal with planar geometry, it is convenient to employ the complex number field. A point z = (x, y) in R2

is identified with the complex number z = x + i y in C. Similarly, a planar parametric curve p(t) = (x(t), y(t)) can be 
identified with a complex valued function p(t) = x(t) + i y(t). A Bézier curve p of degree n with complex Bézier control 
points bk = xk + i yk for k = 0, · · · , n, can then be expressed as

p(t) =
n∑

k=0

Bn
k(t)bk, t ∈ [0,1] (1)

where Bn
k(t) is the Bernstein polynomial defined by

Bn
k(t) =

(
n

k

)
(1 − t)n−ktk.

Let �bk denote the forward difference of the k-th control point, i.e., �bk = bk+1 − bk . Then the derivative of the curve p is 
given by

p′(t) = n
n−1∑
k=0

Bn−1
k (t)�bk.

A planar polynomial curve p(t) = x(t) + i y(t) is called a Pythagorean hodograph (PH) curve (Farouki and Sakkalis, 1990) if 
and only if its derivative p′(t) = x′(t) + i y′(t) satisfies the Pythagorean condition

x′(t)2 + y′(t)2 = σ(t)2

for some polynomial σ(t). The algebraic structures of Pythagorean hodograph curves have been studied in many different 
contexts. We here refer to a few important results.

Theorem 1. A planar polynomial curve p(t) = x(t) + i y(t) of odd degree is a Pythagorean hodograph curve if and only if there exist 
polynomials u(t) and v(t) which satisfies

x′(t) = u(t)2 − v(t)2,

y′(t) = 2u(t)v(t).

Theorem 2. A planar polynomial curve p(t) = x(t) + i y(t) of odd degree is a Pythagorean hodograph curve if and only if there exists 
a complex valued polynomial z(t) such that

p′(t) = z(t)2.

One may consult Farouki (1994) for the proof of the above theorems.
For a regular PH curve p(t) with p′(t) �= 0, the polynomial σ(t) can be chosen as a positive polynomial which is the 

speed function of p(t), i.e.,
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