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The theory of the isoptic curves is widely studied in the Euclidean plane E2 (see Cieślak 
et al., 1991 and Wieleitner, 1908 and the references given there). The analogous question 
was investigated by the authors in the hyperbolic H2 and elliptic E2 planes (see Csima and 
Szirmai, 2010, 2012, submitted for publication), but in the higher dimensional spaces there 
are only few results in this topic.
In Csima and Szirmai (2013) we gave a natural extension of the notion of the isoptic 
curves to the n-dimensional Euclidean space En (n ≥ 3) which is called isoptic hypersurface. 
Now we develope an algorithm to determine the isoptic surface HP of a 3-dimensional 
polyhedron P .
We will determine the isoptic surfaces for Platonic solids and for some semi-regular 
Archimedean polytopes and visualize them with Wolfram Mathematica (Wolfram Research, 
Inc., 2015).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G be one of the constant curvature plane geometries, either the Euclidean E2 or the hyperbolic H2 or the elliptic 
E2. The isoptic curve of a given plane curve C is the locus of points P ∈ G where C is seen under a given fixed angle α
(0 < α < π). An isoptic curve formed by the locus of tangents meeting at right angles is called orthoptic curve. The name 
isoptic curve was suggested by Taylor (1884).

In Cieślak et al. (1991, 1996) the isoptic curves of the closed, strictly convex curves are studied, by use of their support 
function. The explicit formula for the isoptic curve of the triangle can be found in Michalska and Mozgawa (2015). The pa-
pers Wunderlich (1971a, 1971b) deal with curves having a circle or an ellipse by an isoptic curve. Further curves appearing 
as isoptic curves are well studied in the Euclidean plane geometry E2, see e.g. Loria (1911), Wieleitner (1908). Isoptic curves 
of conic sections have been studied in Holzmüller (1882) and Siebeck (1860). Isoptic curves of Bézier curves are considered 
in Kunkli et al. (2013). A lot of papers concentrate on the properties of the isoptics e.g. Miernowski and Mozgawa (1997), 
Michalska (2003), and the references given there. The papers Kurusa (2012) and Kurusa and Ódor (2015) deal with inverse 
problems.

In the hyperbolic and elliptic planes H2 and E2 the isoptic curves of segments and proper conic sections are determined 
by the authors Csima and Szirmai (2010, 2012, 2014). In Csima and Szirmai (submitted for publication) we extended the 
notion of the isoptic curves to the outer (non-proper) points of the hyperbolic plane and determined the isoptic curves of 
the generalized conic sections.

It is known, that the angle between two half-lines with the vertex A in the plane can be measured by the arc length 
on the unit circle around the point A. This statement can be generalized to the higher dimensional Euclidean spaces. The 
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Fig. 1. Projection of a compact domain D onto a unit sphere in E3.

notion of the solid angle is well known and widely studied in the literature (see Gardner and Verghese, 1971). We recall this 
definition concerning the 3-dimensional Euclidean space E3.

Definition 1.1. The solid angle �S (p) subtended by a surface S is defined as the surface area of the projection of S onto the 
unit sphere around P (p), where p is the coordinates of P .

The solid angle is measured in steradians, e.g. the solid angle subtended by the whole Euclidean space E3 is equal to 4π
steradians. Moreover, this notion has several important applications in physics (in particular in astrophysics, radiometry or 
photometry) (see Camp and Van Lehn, 1969), computational geometry (see Joe, 1991) and we will use it for the definition 
of the isoptic surfaces.

The isoptic hypersurface in the n-dimensional Euclidean space (n ≥ 3) is defined in Csima and Szirmai (2013) and now, 
we recall some statements and specify them to E3.

Definition 1.2. The isoptic hypersurface Hα
D in E3 of an arbitrary 3-dimensional compact domain D is the locus of points 

P where the measure of the projection of D onto the unit sphere around P is equal to a given fixed value α, where 
0 < α < 2π (see Fig. 1).

In this paper we develope an algorithm and the corresponding computer program to determine the isoptic surface of 
an arbitrary convex polyhedron in the 3-dimensional Euclidean space. We apply this algorithm for the regular Platonic 
solids and some semi-regular Archimedean solids as well. We note here that this generalization of the isoptic curves to the 
3-dimensional space provides possible research to extend the notion of isoptic surfaces to bounded polyhedral surfaces and, 
with triangulations, to ‘smooth surfaces’.

2. The algorithm

In this section we discuss the algorithm developed to determine the isoptic surface of a given polyhedron.

1. We assume that an arbitrary polyhedron P is given by the usual data structure. This consists of the list of facets FP
with the set of vertices V i in clockwise order. Each facet can be embedded into a plane.
It is well known, that if a ∈ R3 \ {0} and b ∈ R then {x ∈ R3|aT x = b} is a plane and {x ∈ R3|aT x ≤ b} defines a halfspace. 
Every polyhedron is the intersection of finitely many halfspaces. Therefore an arbitrary polyhedron can also be given by 
a system of inequalities Ax ≤ b where A ∈ Rm×3 (4 ≤ m ∈N), x ∈ R3 and b ∈ Rm .

2. For an arbitrary point P (p) ∈ E3 we have to decide, that which facets of P ‘can be seen’ from it. Let us denote the ith
facet of P by F i

P (i = 1, . . . , m) and by ai the vector derived by the ith row of the matrix A which characterize the 
facet F i

P .
Since the polyhedron P is given by the system of inequalities Ax ≤ b, where each inequality aix ≤ bi (i ∈ {1, 2 . . . , m}) 
is assigned to a certain facet, therefore the facet F i

P is visible from P if an only if the inequality aip > bi holds.
Now, we define the characteristic function Ii

P (x) for each facet F i
P :

I
i
P (x) =

{
1 aix > bi

0 aix ≤ bi .

3. Using the Definition 1.1, let �i(p) := �F i
P

(p) be the solid angle of the facet F i
P regarding the point P (p).
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