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a  b  s  t  r  a  c  t

In  this  paper,  based  on  the  logarithmic  image  processing  model  and the dyadic  wavelet  transform  (DWT),
we  introduce  a logarithmic  DWT  (LDWT)  that  is a mathematical  transform.  It  can  be used  in  image  edge
detection,  signal  and  image  reconstruction.  Comparative  study  of  this  proposed  LDWT-based  method  is
done  with  the  edge  detection  Canny  and  Sobel  methods  using  Pratt’s  Figure  of  Merit,  and  the  comparative
results  show  that  the  LDWT-based  method  is  better  and  more  robust  in detecting  low  contrast  edges  than
the  other  two  methods.  The  gradient  maps  of  images  are  detected  by using  the  DWT-  and  LDWT-based
methods,  and  the  experimental  results  demonstrate  that  the  gradient  maps  obtained  by  the LDWT-based
method  are  more  adequate  and  precisely  located.  Finally,  we use the DWT-  and  LDWT-based  methods  to
reconstruct  one-dimensional  signals  and  two-dimensional  images,  and  the  reconstruction  results  show
that the  LDWT-based  reconstruction  method  is  more  effective.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The logarithmic image processing (LIP) model is a technique ini-
tially stated by Jourlin and Pinoli [1] and further developed in [2].
The parametrized LIP model [3] is a generalization of the LIP model
which attempts to overcome the mentioned shortcomings of the
standard processing. The LIP theory is a mathematical framework
that provides a set of specific algebraic and functional opera-
tions and structures that are well adapted to the representation
and processing of non-linear images, valued in a bounded inten-
sity range [4]. It has been used in many image processing tasks
such as edge detection and image enhancement. Recently, many
researchers have developed effective edge detection algorithms
based on LIP such as in [5–10].

Since the dyadic wavelet transform (DWT) is introduced in [11],
it has been widely used in image edge detection (e.g. [12–15]), sig-
nal and image reconstruction (e.g. [11,16]), etc. In image processing,
the traditional edge detection methods can be grouped into two
categories: gradient method (e.g. Sobel, Roberts, Prewitt) and
zero-crossing method (e.g. Laplacian of Gaussian, zero-cross). The

∗ Corresponding author at: Department of Animal Science, Aarhus University,
8830 Tjele, Denmark. Tel.: +45 28825522.
∗∗ Corresponding author at: Department of Engineering, Aarhus University, 8000
Aarhus C, Denmark. Tel.: +45 41893270.

E-mail addresses: gangjun.tu@agrsci.dk, tuganjun@hotmail.com (G.J. Tu),
hka@eng.au.dk (H. Karstoft).

gradient method detects the edges by looking for the maximum and
minimum in the first derivative of the image, and the zero-crossing
method searches for zero crossings in the second derivative of
the image to find edges. However, these gradient-based and zero-
crossing finding algorithms are very sensitive to noise. Thus, a
better edge detection method, Canny edge detector [17] occurs. It
improves the resistance of the noise and the scale of the Gaussian
filter is able to be adjusted. However, the Canny operator still suffers
from some practical limitations (e.g., the performance of the Canny
algorithm relies mainly on the changing parameters). The DWT  has
the good locality and multi-scale identity, and it is recognized as
an efficient way to detect edges and equivalent to the Canny edge
detector. It satisfies the need of edge detection in multi-scales so
that the noise can be avoided, more real edges will be kept, and the
practical limitation of Canny can be overcome.

Many recent studies have shown that the wavelet transform is
a good method for edge detection such as in [18–22]. For exapmle,
the authors in [18] proposed a scale multiplication based edge
detection scheme in wavelet domain. The wavelet transforms at
two adjacent scales are multiplied to magnify the edge structures
and suppress the noise. The method determines the edges as
the local maxima directly in the scale product after an efficient
thresholding, and achieves better results on the localization per-
formance in natural images. Unfortunately, it requires a properly
determining threshold to suppress the noise maxima. In [23], the
authors reviewed wide range of methods of edge detection for
image segmentation and concluded that wavelets based methods
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are more accurate than other methods, i.e., the wavelet-based
edge detection scheme is considered better than the traditional
methods and the Canny operator.

In this paper, we introduce a logarithmic DWT  (LDWT), which is
an integration of the LIP model and the DWT. In the LIP model, an
edge can be defined a positive graytone function within the gray
range that corresponds to an intensity of image, and this model
associated to the wavelet transform emphasizes certain features
such as transitions in a specific range of gray level that are not
enhanced using wavelet transform [24]. Thus, the certain features
can be used to edge detection and reconstruction.

As known, the wavelet transform modulus maxima (WTMM)
representation [11] is a multiscale contour representation of an
image. This representation is obtained by retaining the local mod-
ulus maxima of the DWT  which correspond to discontinuities in
the image. Based on the WTMM,  some image reconstruction algo-
rithms are proposed in the literature such as in [16,25]. Similarly,
we propose a logarithmic WTMM  (LWTMM)  representation, and a
reconstruction algorithm by using the LWTMM.

This paper is organized as follows: Section 2 provides a brief
of overview the theory that includes the LIP model and the DWT.
Section 3 defines the LDWT and describes the proposed methods.
Section 4 presents the experimental results. Section 5 draws dis-
cussion based on the experimental results.

2. Methods

In this section, we describe the LIP model and the DWT. The sym-
bols 1D and 2D stand for one- and two-dimensional, respectively.

2.1. Logarithmic image processing

A key point in using LIP model is to carefully distinguish between
variables in the two domains: the graytone and the gray level. The
relationship between a graytone function f and its corresponding
classical gray level function f̃ is defined by f = M − f̃ , where M ∈ R
(i.e. real number). The value of a graytone function at a spatial loca-
tion is called a graytone, and the real number range interval [0, M)
is thus called the gray tone range. In order to be able to work in
an algebraic vector space, the range has been extended to f ∈ (− ∞ ,
M). In this paper, the graytone operators can be defined in the set
of graytone E = (− ∞ , M).

The two following operations, addition ⊕ and scalar multiplica-
tion ⊗ on set E [26,27], can establish a real vector space structure
(E, ⊕, ⊗):

• The addition ⊕ between two graytones is defined as:

∀u1, u2 ∈ E, u1 ⊕ u2 = u1 + u2

1 + u1 · u2
M2

. (1)

• The scalar multiplication ⊗ of a graytone u with a real scalar  ̨ ∈ R
is:

˛ ⊗ u = M · (M + u)˛ − (M − u)˛

(M + u)˛ + (M − u)˛
. (2)

In the LIP model, the (E, ⊕, ⊗) is algebraically isomorphic to the
real number space (R, +, ×) by the mapping � : E −→ R:

∀u ∈ E,  �(u) = −M · ln (1 − u

M
), (3)

where ln is the natural logarithm. Thus, the isomorphic transform
of a graytone u is denoted by ũ = �(u), where ũ is a real number.

For example, it is easy to show that �(u1 ⊕ u2) = ũ1 + ũ2 and �(˛ ⊗
u) = ˛ũ. The inverse isomorphic transformation is then defined as:

�−1(ũ) = M · [1 − exp (
−ũ
M

)], (4)

where exp is the exponential function. We  also extend the following
operators:

• The graytone multiplication 	 can be defined by

∀u1, u2 ∈ E, u1 	 u2 = �−1(�(u1) · �(u2)). (5)

• The standard convolution operator ∗ is used in the DWT. There-
fore, a graytone convolution �is defined:

∀u ∈ E,  (u�w) = �−1(�(u) ∗ w), (6)

where w is a filter (e.g. a Gaussian filter), which is convoluted
with �(u) that belongs to the real number space R.

• The LIP summation can be defined as

∀ui ∈ E,

n∑
i=1

⊕ ui = u1 ⊕ u2 ⊕ · · · ⊕ un. (7)

It is important to note that the graytone space E is totally isomor-
phic to the real number space R  in which it preserves the algebraic,
topological and order structures [4], i.e., the manipulation of gray
tone operations is equivalent to the manipulation of their corre-
sponding isomorphic transforms with the usual operations.

2.2. Dyadic wavelet transform

The discrete DWT  of a signal is implemented using halfband
lowpass and highpass filters forming a filterbank together with
downsamplers. The filterbank produces two sets of coefficients:
orthogonal detail (or wavelet) coefficients which are the even
outputs of the highpass filter, and the coarse (or approximation)
coefficients which are the even outputs of the lowpass filter.

The 1D wavelet transform of a function f̃ (x) (i.e. f̃ ∈ L2(R)) at
scale 2j is defined as {W2j f̃ }j∈Z with W2j f̃ := f̃ ∗  2j , where  2j (x) =
(1/2j) (x/2j) is a wavelet   expanded by a dilation parameter 2j.
W2j f̃ is referred to as the detail component. Let �(x) be a scal-
ing function, at each scale 2j, the related scaling coefficients are
computed by S2j f̃ := f̃ ∗ �2j , which is referred to as the coarse
component, and �2j (x) = (1/2j)�(x/2j) is � expanded by a dilation
parameter 2j. For a J-level, the collection {S2j f̃ , {W2j f̃ }}1≤j≤J is called
the 1D discrete DWT.

For an image f̃ (x, y) (i.e. f̃  ∈ L2(R2)), the 2D wavelet trans-
form of f̃ at scale 2j is defined as W1

2j
f̃ := f̃ ∗  1

2j
and W2

2j
f̃ :=

f̃ ∗  2
2j
, where  1

2j
(x, y) = (1/2j) 1(x/2j, y/2j) and  2

2j
(x, y) =

(1/2j) 2(x/2j, y/2j) are the wavelets  1(x, y) and  2(x, y)
expanded by a dilation parameter 2j, respectively. As 1D, let �(x, y)
be a real function. The coarse component of the image f̃ at scale 2j

is S2j f̃ := f̃ ∗ �2j , where �2j (x, y) = (1/2j)�(x/2j, y/2j). For a J-level,
the collection {S2j f̃ , {W1

2j
f̃ , W2

2j
f̃ }}

1≤j≤J is called the 2D discrete

DWT. The gradient map  of f̃ at pixel position (x, y) at scale 2j is thus
proportional to the wavelet transform modulus:

gradMap2j (f̃ )(x, y) =
√

|W1
2j
f̃ (x, y)|2 + |W2

2j
f̃ (x, y)|2, (8)

and the angle of the gradient vector is given by A2j f̃ (x, y) =
arctan(W2

2j
f̃ (x, y)/W1

2j
f̃ (x, y)).
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