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a b s t r a c t 

Structure-texture image decomposition aims to interpret an image as the superposition of a structural 

component and a textural component, which is a very challenging problem, yet opens the door to many 

applications once solved successfully. The number of zero crossings in derivatives is utilized as a type of 

coarseness measure to perform structure-aware image smoothing. By this measure, the smoothed signal 

is required to have a smaller number of intervals over which it is monotonically increasing or decreasing 

(convex or concave), as well as to be similar to the original signal. We propose an efficient method for 

evaluating the proximity operator of the number of zero crossings to solve the resulting optimization 

problem. Our method is also validated with applications in inverse halftoning, smoothing photos captured 

from screen, and text image deblurring. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

An image is usually a composite of various patterns in a broad 

spectrum of scales, e.g., large-scale silhouette and fine-grained in- 

tensity fluctuation, hence it is difficult to design a single opera- 

tion to process all components appropriately. Structure-texture im- 

age decomposition aims to interpret an image Y as a superposition 

of two components: Y = S + T , where the structural component S 

is expected to be piecewise smooth, accommodating step edges, 

while the textural component T captures oscillatory patterns such 

as texture and noise. Although the characteristics of each com- 

ponent are hard to define precisely, the general concept is that 

from the structural component one can recognize salient objects in 

the original image, and the textural component contains brightness 

fluctuations within local areas [8] . Once these two components are 

extracted, we can process each component separately and then re- 

combine them. This operation framework finds a wide variety of 

applications in low-level computer vision and image processing, 

including edge extraction [1] , optical flow estimation [9] , intrinsic 

image decomposition [10] , rain streaks removal [11] , image com- 

pression [12] , detail enhancement [1] , inverse halftoning [13] , and 

JPEG artifacts suppression [14] , among many others. 

Many structure-texture decomposition methods explicitly find 

the structural component S , with the textural component T implic- 
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itly expressed as Y − S. In this way the decomposition problem re- 

duces to smoothing the original image Y to extract S , i.e., filter- 

ing out the textural component T from Y , hence it is also called 

structure-preserving image smoothing [13] . To keep in line with 

most authors, we take the smoothing point of view throughout this 

paper. 

In terms of Fourier transform, large-scale structures roughly 

correspond to low frequencies while texture and noise correspond 

to high frequencies, so linear lowpass filters can separate struc- 

tural component from textural component to some degree. But a 

sharp structural edge will be smoothed by lowpass filtering since 

it contains significant high-frequency components. Homomorphic 

filtering [15] decomposes an image into its illumination compo- 

nent and reflectance component, with multiplication rather than 

addition as the combination operation. The illumination compo- 

nent varies slowly and does not contain sharp edges with large 

gradients. 

Mumford and Shah [16] introduce a variational approach to 

compute the optimal approximation of a given function Y by a 

piecewise smooth function S . The Mumford-Shah functional pe- 

nalizes the length of a boundary set C and large gradients of S 

in the complement of C , allowing S to have discontinuities in C . 

People also propose other different energy terms and functional 

spaces that suit various types of textures [17–22] . However, the 

required numerical solutions are challenging [23] and these ap- 

proaches place more emphasis on theoretical analysis rather than 

practical performance. 

A variety of algorithms for edge-preserving image smoothing 

have been proposed over the past years [24–31] , where the goal 
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Fig. 1. Structure-preserving image smoothing. For input (a) from the web pages of Xu et al. [1] , our smoothing result (j) is comparable to, if not better than, those of other 

seven methods (b)–(h), in regard to preserving image structure as well as smoothing texture. We also show our result without maximum joint bilateral filtering for reference 

(i). All results of other methods are from Jeon et al. [7] except (b) and (g). Parameters are (b) λ = 0 . 02 , σ = 3 , (c) k = 7 , n itr = 3 , (d) σs = 4 , σr = 0 . 1 , N iter = 5 , (e) λ = 100 , 

σ = 3 , (f) le v el smoothing = 3 , (g) σ = 3 , ε = 0 . 02 2 , (h) σ = 4 , σr = 0 . 05 , n iter = 5 , (i) (j) λ = 0 . 08 . 

is to attenuate weak gradients and retain high-contrast intensity 

changes. Nevertheless, these edge-aware methods cannot be used 

for structure-preserving image smoothing, because the textural 

component usually contains high-contrast edges, and whether a 

position belongs to the structural component or to the textural 

component can hardly be determined only by the amplitude of its 

gradient. 

Recently, Xu et al. [1] breathe new life into this topic by pro- 

ducing high-quality results and by uncovering the potential of ap- 

plications on image editing and analysis. They perform structure- 

texture decomposition on images with mosaics or graffiti and thus 

further demonstrate the strength and meaning of this research 

subject. Since then many methods have come to the fore, including 

[2–7,13,32–38] . Although these methods can produce impressive 

results, there is still room for improvement. See Fig. 1 for an 

example. 

In this paper we propose a new coarseness measure, which 

counts zero crossings in derivatives, to help separate the structural 

component S from the textural component T . Our loss function pe- 

nalizes the number of convex/concave or monotonically increas- 

ing/decreasing segments of a signal, rather than large neighboring 

intensity differences. In this way, salient structural edges are pre- 

served irrespective of the amplitudes of the corresponding gradi- 

ents, while the textural component which contains intensity fluc- 

tuations is smoothed out. One example of our results is shown in 

Fig. 1 . 

The rest of this paper is structured as follows. Section 2 sum- 

marizes some related work to set the background for our method. 

Section 3 introduces our new coarseness measure using zero 

crossings. Based on this coarseness measure, Section 4 presents 

our structure-preserving smoothing algorithm. Section 5 eluci- 

dates how to evaluate the proximity operator of the number of 

zero crossings, which plays a key role in the numerical solver 

for our loss function. Section 6 illustrates some applications of 

our decomposition method. Finally, we conclude our work in 

Section 7 . 

2. Related work 

Most structure-aware texture smoothing methods fall into three 

categories: weighted average filtering, weighted l 2 gradient filter- 

ing, and coarseness measure regularized minimization. The first 

two types rely on a similarity measure to quantify the extent to 

which two pixels should be averaged, i.e., whether they are both 

on the same side of a structural edge. The last type rests on how to 

measure the coarseness of a signal. From a numerical solver stand- 

point, the first type has an explicit computation formula, the sec- 

ond type solves a sparse linear system, while the last type involves 

an optimization problem. 

Weighted average filtering calculates smoothed image S directly 

from input image Y by 

S n = 

∑ 

m ∈N n w n,m 

Y m ∑ 

m ∈N n w n,m 

, (1) 

where n = (n 1 , n 2 ) and m = (m 1 , m 2 ) are pixels expressed in terms 

of their positions, N n is the set of neighboring pixels of n . The 

weight w n,m 

encodes the similarity between pixels n and m , and 

is thus the key to achieve structure-texture separation. Note that 

bilateral filtering [24] also uses Eq. (1) , but its weight w n,m 

is 

designed for edge-preserving smoothing. Karacan et al. [13] de- 

fine w n,m 

based on region covariance [39] computed from image 

patches. Cho et al. [2] achieve better results by allowing patch shift 

to exclude prominent structural edges. This method is modified 

in [36] through adaptively choosing between two different patch 

sizes. Zhang et al. [3] employ Eq. (1) in an iterative manner, where 

the weight w n,m 

is updated per pass from the smoothed interme- 

diate result. Buades et al. [23,40,41] propose a nonlinear lowpass- 

highpass filter pair, which is defined by taking a weighted aver- 

age of the original image and its linear lowpass filtered version. 

Inspired by [42,43] , Du et al. [37] perform a space-variant blend- 

ing between the input image and the result of applying Eq. (1) . 

Jeon et al. [7] compute w n,m 

in a scale-adaptive manner, such that 

each pixel can be smoothed via an optimal scale. 
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