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a b s t r a c t 

The problem of determining visibility locations (VLs) on/inside a domain bounded by a planar C 1 - 

continuous curve (without vertices), such that entire domain is covered, is discussed in this paper. The 

curved boundary has been used without being approximated into lines or polygons. Initially, a few ob- 

servations regarding the VLs for a curved boundary have been made. It is proposed that the set of VLs 

required to cover the domain be placed in a manner that the VLs and the lines connecting them form a 

spanning tree. Along with other observations, an algorithm has been provided which gives a near opti- 

mal number of VLs. The obtained number of VLs is then compared with a visibility disjoint set, called as 

witness points, to obtain a measure of the ‘nearness’ of the number of VLs to the optimum. The exper- 

iments on different curved shapes illustrate that the algorithm captures the optimal solution for many 

shapes and near-optimal for most others. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 1 

The problem of identifying regions of visibility within a domain 

Q2 

2 

(or from outside of it) has been useful in many applications such 3 

as mold design for manufacturing, inspection of models, shortest 4 

path identification, placing guards to cover an art gallery, sensor 5 

location, robot motion planning etc. In the case of mold design, 6 

the problem is posed as ‘whether the model is a two-piece, given 7 

a set of viewing directions’ [1] . Alternatively, given a model, the 8 

problem is to identify optimal parting directions that reduce the 9 

number of mold pieces [2,3] . 10 

Viewpoint selection that covers the entire object has been used 11 

in inspection. Clearly, creating an optimal set of viewpoints (or vis- 12 

ibility locations (VLs)) will then reduce the overall cost of inspec- 13 

tion (see [4] for a detailed survey on this topic). In the case of 14 

shortest path identification [5] , the visibility graph has been a very 15 

popular construction, which can be computed using tangents [6] . 16 

Sensor location also depends on the visibility of a feature, apart 17 

from several other factors [7] . Other applications including secu- 18 

rity, computer graphics (hidden surface removal) etc. also come 19 

under the realm of visibility region identification. For further de- 20 

tails on the applications, see [8] . 21 
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The problem of visibility locations has usually considered do- 22 

main bound by a polygon (a closed shape with well-defined ver- 23 

tices and edges as straight lines which do not intersect except at 24 

their vertices), at times with holes, typically solved by computa- 25 

tional geometers and termed as art-gallery problem (see [9] ) and 26 

occasionally polyhedra [10,11] . However, the problem of VLs rarely 27 

considers complex objects such as curved ones. Recently, this prob- 28 

lem for curved polygons has been addressed in [12,13] by replacing 29 

straight edges with curves which are either piecewise convex or 30 

piecewise concave, but not a mixture of both. In the current avail- 31 

able literature for curved polygons, vertices are well defined. 32 

Determining optimal visibility locations for a single closed con- 33 

tinuous curved boundary (i.e without explicit notion of vertices), 34 

particularly when the locations can be interior to the domain has 35 

not been addressed, to the best of our knowledge. A conservative 36 

estimate on the number of VLs when the locations can be on the 37 

walls of the curved boundary has been provided in [8] using a vis- 38 

ibility chart. The algorithm in [8] requires a set of candidates as 39 

input, from which either a set of VLs may be obtained or the al- 40 

gorithm results in failure. To aid practical solutions, they also dis- 41 

cretize the visibility chart. Other works which discretize for prac- 42 

tical solutions include generalised discrete framework for visibility 43 

problems in [14] and geometric multi-covering [15] . 44 

Problem Statement, approach and the obtained results 45 

More often than not, in practice, VLs (hereafter, termed as 46 

guards , for ease and clarity of explanation) are required to be 47 
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Fig. 1. Boundary guards [8] vs. guard at the interior for a star-shaped domain 

(guards shown as dots). 

placed not just on the boundary but also interior to it. For exam- 48 

ple, for a star-shaped curved polygon, as opposed to three guards 49 

on the boundary ( Fig. 1 (a)), a single guard interior to the domain 50 

can cover it (as in Fig. 1 (b)). In practice, it would be useful if the 51 

guards are allowed to be placed interior/on the domain (and not 52 

just on its boundary). Hence, given a planar domain bounded by 53 

a smooth (i.e. without C 1 discontinuities), parametric, non-convex 54 

closed simply-connected curve C ( t ), this paper aims to find the 55 

near-optimal number of guards that cover the entire domain. To 56 

the best of the knowledge of the authors, this is perhaps the first 57 

work aimed in this direction. Vertices are not explicitly defined 58 

in the curved boundary considered in this paper, and hence it is 59 

different from the curved domains considered in [12,13] . Also, no 60 

discretization approach has been employed like in [8] , though we 61 

use a rule-based approach like the one used in [16] . However, the 62 

rules have been arrived upon based on our observations. The ap- 63 

proach presented is heuristic-based and greedy in nature. It adds 64 

one guard at a time. Moreover, we employ a first order approach to 65 

solve this problem, typically employed in hidden Markov models. 66 

It can also be noted that there can be many measures to come up 67 

with a ‘good’ guard from a candidate set (as can be seen in [16] ) 68 

and our approach is based on internal tangents as it is related to 69 

the visibility in the case of a curved boundary. 70 

We also have proposed an algorithm to compute ‘witness 71 

points’, a technique introduced in [16] , based on which the op- 72 

timality of the solution obtained has been conjectured to be no 73 

worse than twice the actual optimal number of guards. In prac- 74 

tice, based on the experiments conducted, the proposed approach 75 

returns the optimal solution for many of the tested curves. 76 

2. Preliminaries 77 

Let the boundary of a domain D be bounded by a parametric 78 

closed curve C ( t ) without C 1 discontinuities. Let the exterior of the 79 

curve be denoted by D 

c . 80 

2.1. Definitions 81 

Definition 1. A point on a curve at which the curvature changes 82 

sign is called an inflection point . 83 

Definition 2. A point on a curve is concave if its center of curva- 84 

ture and outward normal at that point are in the same direction, 85 

otherwise the point is termed convex ( S in Fig. 2 (a) is concave, 86 

whereas O in Fig. 2 (b) is convex). 87 

Definition 3. An internal tangent (denoted as IntT) is a line seg- 88 

ment completely lying to the interior/on the curve (no point of the 89 

line segment lies exterior to the curve) which is a tangent to at 90 

least one point on the curve (e.g., the line segment AB in Fig. 2 (a) 91 

or AO in Fig. 2 (b)). 92 

Fig. 2. (a) An internal tangent AB , and (b) its silhouette and occlusion points S and 

O , respectively. (c) Inflection points I and I ′ , and their IPTs IO and I ′ O ′ . (d) The vis- 

ibility region V(G ) of a guard G shown in red color. (For interpretation of the ref- Q3 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

Definition 4. The point at which an internal tangent touches a 93 

curve tangentially is called its silhouette point (henceforth denoted 94 

by S ) [8] . S in Fig. 2 (a) is the silhouette point of the IntT AB . 95 

Definition 5. If an internal tangent has another point lying on the 96 

curve (apart from its silhouette point), then such a point is called 97 

an occlusion point ( O in Fig. 2 (b)) [8] , and is henceforth denoted 98 

by O . 99 

Definition 6. An internal tangent starting at an inflection point 100 

is called inflection point tangent (IPT). Its starting point coincides 101 

with its silhouette point ( Fig. 2 (c)). 102 

Definition 7. A point P ∈ D is considered visible to another point 103 

Q ∈ D, if for all points x ∈ P Q , x ∩ D 

c = φ, i.e. no point on the line 104 

segment PQ lies completely exterior to the boundary of D. Grazing 105 

contact is allowed i.e. the line segment can touch the boundary 106 

(typically tangentially). 107 

For example, in the Fig. 2 (b), O is considered visible to A even 108 

though the line segment OA has a grazing contact at S. 109 

Definition 8. Let V(G ) = { x | x ∈ D and x is visible to G } be the set 110 

of points forming the visibility region of the point G (the red area 111 

in Fig. 2 (d) indicates the visibility region of G). A set W , consist- 112 

ing of points on or inside C ( t ) are termed as witness points [16] if 113 

visibility regions in the set are pairwise disjoint, i.e., ∀ q,r∈ W 

V(q ) ∩ 114 

V(r) = φ . 115 

2.2. Observations on the visibility of a guard 116 

The motivation for our observations comes from the fact that, 117 

unlike a polygonal boundary, a C 1 continuous curved boundary 118 

does not have explicitly defined vertices. A guard is assumed to be 119 

represented as a point which can see in every direction (i.e. has a 120 

360 ° range of visibility). A set of guards is said to cover the domain 121 

if every point in the domain is visible to some guard [9] . Also, a 122 

guard cannot see through the curved boundary (i.e. the boundary 123 

is assumed to be opaque), and can either lie on or interior to it. An 124 
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