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a b s t r a c t 

We consider the problem of analyzing the topology of scalar fields defined on a triangulated shape by 

using a multi-scale approach, which allows reducing storage costs and computation times, and supports 

interactive inspection and classification of topological features. We define and implement a multi-scale 

model that we call a Hierarchical Forman Triangulation (HFT) , where a 3D shape or a terrain is discretized 

as a triangle mesh, and its topology is described by defining a discrete Morse gradient field based on 

function values given at the vertices of the mesh. We introduce a new edge contraction operator, which 

does not change the behavior of the gradient flow and does not create new critical points, and we apply 

it in combination with a topological simplification operator which eliminates critical elements in pair. By 

combining the two operators in a sequence, we generate the HFT . We discuss and implement a compact 

encoding for the HFT that has a lower storage cost with respect to the triangle mesh at full resolution. 

We show the effectiveness of this new hierarchical model by extracting representations of terrains and 

shapes endowed with a scalar field at different, uniform and variable, scales and by efficiently computing 

topological features and segmentations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Computational topology is a rapidly developing field in data and 

shape analysis. It is used to support classification and understand- 

ing combined with machine learning techniques [1] and as the ba- 

sis for interactive analysis and inspection through visualization [2] . 

Topological tools are rooted in Morse theory and persistent homol- 

ogy. This latter has produced shape signatures, like the barcode or 

the persistent diagram, while the former has been the basis for ex- 

tracting topological features, like the Reeb graph, which describes 

the evolution of the level sets of a scalar function defined on a 

manifold shape, or the Morse and Morse–Smale complexes, which 

provide a segmentation of a shape induced by the regions of influ- 

ence of the critical points of a scalar function defined on it [3] . 

These latter have been extensively used for terrain analysis [4] , 

shape analysis [5,6] or remeshing [7] . 

The purpose of our work is extracting Morse features, like 

the ascending and descending manifolds forming the Morse com- 

plexes, efficiently and effectively. We consider a terrain or a 3D 

shape discretized through a triangle mesh, with a scalar value as- 

sociated with its vertices. Because of the large size of the meshes, 

most of the recent approaches to extract topological features from 
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data are based on a discrete version of Morse theory for cell and 

simplicial complexes [8] , which allows an entirely combinatorial 

and derivative-free approach to Morse feature computation. 

Since data are affected by noise, many spurious critical points 

and cells can be generated. Simplification approaches have been 

defined for dealing with both noise and data redundancy [9,10] . 

Simplifying a scalar field using topological simplifications means 

canceling critical points in pairs, thus reducing the number of cells 

in the Morse complexes. Simplification approaches have been rec- 

ognized as effective but not efficient, especially to support data in- 

spection and understanding through visualization. Multi-resolution 

approaches have been introduced for providing faster interactions 

and more degrees of freedom on the extracted representations 

[11–13] . Most of these models interact with the morphology but 

leave the underlying mesh untouched. This is a serious issue when 

working with big datasets since the complexity of extracting, rep- 

resenting and visualizing Morse features is mainly affected by the 

resolution of the mesh and not by the size of the Morse complexes. 

Our work is inspired by Iuricich and De Floriani [14] where the 

authors introduce the first edge contraction operator for a trian- 

gle mesh endowed with a scalar field which maintains the For- 

man gradient. The operator is used to create a progressive model, 

consisting of a sequence of simplifications of the mesh and of 

the Forman gradient. On the other hand, we define a multi-scale 

model for a triangulated shape endowed with a scalar field, that 

we call a Hierarchical Forman Triangulation (HFT) . The HFT allows 
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extracting both a mesh and a topological representation at differ- 

ent levels of topological and geometric resolutions. The model is 

generated based on two simplification operators: the edge contrac- 

tion operator, which simplifies the mesh, and the cancellation op- 

erator, which simplifies the morphology. The edge contraction op- 

erator that we will introduce in Section 5 is an improvement over 

the one defined in [14] since it imposes conditions on the Forman 

gradient V only. Given a triangle mesh � endowed with a scalar 

function given at its vertices, we build a discrete Morse gradient 

V on � compatible with the scalar field; then, through edge con- 

tractions and cancellations , we simplify both � and V . The HFT is 

built from the resulting sequence of simplifications. The inverse of 

the atomic simplifications used to generate the HFT together with a 

partial order dependency relation between pairs of simplifications 

form the structure of the HFT , from which representations at dif- 

ferent scales, also variable across the mesh, can be efficiently ex- 

tracted. The major contributions of this work are the definition and 

implementation of: 

• a simplification operator for triangle meshes endowed with a 

Forman gradient, which does not eliminate or generate critical 

elements, and generalizes the operator presented in [14] ; 
• a new refinement operator, inverse of the latter, that operates 

on the mesh and on the Forman gradient without creating or 

eliminating critical elements; 
• a new multi-scale model, the Hierarchical Forman Triangulation 

( HFT ), which combines mesh and topological updates, based on 

discrete Morse theory; 
• a dependency relation between topological updates, which is 

minimal in the number of dependencies required, thus greatly 

enhancing the expressive power of the multi-scale model. 

The HFT has a low storage cost, lower than that of the mesh at 

full resolution, and provides a high flexibility in adjusting the reso- 

lution of the mesh to comply with the scale of the topological rep- 

resentation. This allows extracting variable-scale representations of 

the mesh endowed with the gradient as well as multi-scale Morse 

features efficiently. 

2. Background notions 

Morse theory [15,16] is a mathematical tool studying the re- 

lationships between the topology of a manifold shape M and 

the critical points of a smooth scalar function f defined over M . 

Piecewise-linear Morse theory transposes some results from Morse 

theory to piece-wise linear functions [17] . Here, we focus on a 

combinatorial counterpart of Morse theory for cell complexes due 

to Forman and called Discrete Morse Theory (DMT) [8] . Since sim- 

plicial complexes are common discretization structures [18] for 

shapes in low and high dimensions, we review DMT focusing only 

on these latter. Recall that a k-dimensional simplex , or simply a k- 

simplex , σ is the convex hull of k + 1 geometrically independent 

points in R 

n . 0-, 1- and 2-simplices are also called vertices , edges , 

and triangles , respectively. A triangle mesh is a special case of a 

simplicial complex: it is formed by vertices, edges and triangles 

and has a manifold domain. 

We consider a pair ( �, F ), where � is a triangle mesh and 

F : � → R is a scalar function defined on all the simplices of �. 

Function F is a discrete Morse function (also called a Forman func- 

tion ) if and only if, for every k -simplex σ ∈ �, all the (k − 1) - 

simplices on the boundary of σ have a lower function value than 

σ , and all the (k + 1) -simplices bounded by σ have a higher func- 

tion value than σ , with at most one exception. If there is such an 

exception, it defines a pairing of cells, called a gradient pair . A gra- 

dient pair can be viewed as an arrow in which the head is a k - 

simplex and the tail a (k − 1) -simplex. A simplex that is not a head 

or a tail of any arrow is a critical simplex . A V-path is a sequence of 

simplices [ σ0 , τ0 , σ1 , τ1 , . . . , σi , τi , . . . , σq , τq ] such that σ i and σi +1 

are on the boundary of τ i and ( σ i , τ i ) are paired simplices, where 

i = 0 , . . . , q . 

The collection of all paired and critical simplices of � forms 

a discrete Morse gradient (also called a Forman gradient ) if there 

are no closed V -paths, i.e., if all V -paths are acyclic. In Fig. 1 (a)) 

a Forman gradient is shown: it has two critical triangles ( t and 

t 1 ), one critical edge e , and one critical vertex v . Given a triangle 

mesh � endowed with a scalar function f defined on its vertices, 

we can always compute a Forman gradient V without computing 

the Forman function F explicitly. In our work we compute the For- 

man gradient through the algorithm in [19] . In the following, we 

denote a triangle mesh � endowed with a Forman gradient V as 

a pair ( �, V ). We call a separatrix V j -path any V -path of the fol- 

lowing form: [ τ, σ0 , τ0 , σ1 , τ1 , . . . , σi , τi , . . . , σq , τq , σ ] , where τ and 

σ are two critical simplices of dimension j + 1 and j , respectively. 

Thus, in a triangle mesh � we will have separatrix V 0 -paths con- 

necting a critical edge to a critical vertex and separatrix V 1 -paths 

connecting a critical triangle to a critical edge (see Fig. 1 ). 

Topological features are defined in the discrete case in terms of 

the Forman gradient and its paths. The critical net consists of the 

critical vertices, edges, and triangles plus the separatrix V 0 - and 

V 1 -paths connecting them. Any descending k -manifold (which is a 

k -cell of the descending Morse complex), is the collection of the 

k -simplices of � reached by the gradient paths starting from crit- 

ical k -simplex. Dually, an ascending k -manifold (a k -cell of the as- 

cending Morse complex) is the collection of the (2 − k ) -simplices 

reached by the gradient paths (visited backward) starting from 

a critical (2 − k ) -simplex. Fig. 1 (e) illustrates the descending 2- 

manifold associated with triangle t . A description of the algorithms 

used for extracting the ascending and descending manifolds from 

a Forman gradient can be found in Section 8 . 

3. Related work 

Morse complexes can be simplified by applying an operator de- 

fined in smooth Morse theory, called cancellation [16] . A cancel- 

lation removes two critical points of consecutive index which are 

connected by a separatrix line. This operator has been investigated 

in 2D [11,20–22] and 3D [10,23] , by considering piecewise-linear 

shape approximations. 

Given a sequence of cancellations, a hierarchical model is built 

by organizing into a hierarchy the refinements which are inverse of 

such cancellations, each refinement (also called anti-cancellation) 

performing an undo of the corresponding cancellation. Several hi- 

erarchical models exist for representing the morphology of a tri- 

angle mesh endowed with a scalar field [3] . They can be classi- 

fied as: progressive models , that just represent the sequence of re- 

finements reversing the cancellation sequence, and multi-resolution 

models , that organize the refinements according to a partial order 

relation of mutual dependencies among the refinements. These lat- 

ter have a much higher expressive power, since they support the 

extraction of a large number of representations not encountered 

during the cancellation process. The first progressive morphologi- 

cal model has been developed in the context of image analysis. The 

hierarchical approach described in [24] defines a containment hier- 

archy for the regions of the watershed segmentation computed on 

the image. In [20] a progressive model is defined for the morphol- 

ogy of a terrain. The hierarchy is created by applying cancellations 

on the critical net. The hierarchy is encoded as the critical net at 

the coarsest resolution plus the sequence of anti-cancellations , in- 

verse to the cancellations used in the construction phase. 

In [4,11] a dependency relation among anti-cancellations is in- 

troduced for building a multi-resolution model. In [11] , the depen- 

dency relation between two refinements is defined in terms of a 

diamond . The diamond associated with an anti-cancellation( q , p ) 
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