
ARTICLE IN PRESS 

JID: YGMOD [m5G; June 1, 2017;14:10 ] 

Graphical Models 0 0 0 (2017) 1–11 

Contents lists available at ScienceDirect 

Graphical Models 

journal homepage: www.elsevier.com/locate/gmod 

Computing urban radiation: A sparse matrix approach 

J.P. Aguerre 

a , ∗, E. Fernández 

a , G. Besuievsky 

b , B. Beckers c 

a Centro de Cálculo, Universidad de la República, Montevideo, Uruguay 
b ViRVIG, Universitat de Girona, Girona, Spain 
c Université de Pau et des Pays de l’Adour, Anglet, France 

a r t i c l e i n f o 

Article history: 

Received 26 January 2017 

Accepted 21 May 2017 

Available online xxx 

Keywords: 

Urban radiation exchange 

Radiosity 

Form factors 

Sparse matrix 

a b s t r a c t 

Cities numerical simulation including physical phenomena generates highly complex computational chal- 

lenges. In this paper, we focus on the radiation exchange simulation on an urban scale, considering differ- 

ent types of cities. Observing that the matrix representing the view factors between buildings is sparse, 

we propose a new numerical model for radiation computation. This solution is based on the radiosity 

method. We show that the radiosity matrix associated with models composed of up to 140k patches can 

be stored in main memory, providing a promising avenue for further research. Moreover, a new technique 

is proposed for estimating the inverse of the radiosity matrix, accelerating the computation of radiation 

exchange. These techniques could help to consider the characteristics of the environment in building de- 

sign, as well as assessing in the definition of city regulations related to urban construction. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Due to the increasing need of energy assessment tools at large 

scale, urban physics simulation has become a major topic of in- 

terest. The evaluation of annual solar irradiance and the analysis 

of the spatial variation over building facades has a relevant inter- 

est for urban planning and building design. Computational simula- 

tion for radiative transfer on an urban scale is a challenge, because 

thousands of buildings have to be considered. The main problem 

is how to deal with the huge amount of data required to represent 

such models. 

One of the mathematical models adapted to predict urban ra- 

diation exchange is the use of the radiosity method [1,2] . A full 

solution of this method in a city model may require computing 

the view factors between all building mesh elements and solving 

the linear system, which may be an expensive computational task 

when considering a district model composed of hundreds of build- 

ings. A possible solution to manage the problem is to simplify the 

visibility problem [3] . 

We focus on solving the problem taking all visibility informa- 

tion into account. By observing that the form factor matrix that 

represents all view factors is sparse for this kind of environments, 

we propose a novel approach for radiative exchange computation 

that can approximate the inverse of the radiosity matrix. We for- 

mulate the problem as a Neumann series [4] and approximate the 
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matrix by eliminating unimportant terms. Our study on different 

kinds of urban model configuration shows that, for models com- 

posed of thousands of patches, we can provide an accurate approx- 

imation of the inverse radiosity matrix that can also be stored in 

main memory. The radiosity method exposed here allows reducing 

the memory and execution time up to two orders of magnitude. 

This promising result enables processing city models bigger than 

100k patches on a standard desktop PC. Moreover, the method can 

be applied for solving thousands of radiative configurations effi- 

ciently, considering many bounces of light and heat radiation. This 

is useful for light and heat calculations. 

2. Related work 

The two main methodologies for solving the urban radiant ex- 

change problems are ray tracing and radiosity. While the former is 

widely used in rendering, the radiosity method is more suitable 

when the surfaces are Lambertian reflectors (such as concrete). 

One of the advantages of using this method is that it can give re- 

sults in the whole scene space, which makes it attractive for urban 

environment analysis. In the rest of this section, we review the ra- 

diosity method and the works related to our approach. 

2.1. The radiosity problem 

The radiosity method [5] is a technique which allows comput- 

ing global illumination on scenes with Lambertian surfaces. It has 

been applied in many areas of design and computer animation [6] . 

The continuous radiosity equation can be discretized through the 
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use of a finite element methodology. The scene is discretized into 

a set of patches, leading to express the problem using the follow- 

ing set of linear equations: 

B i = E i + R i 

∑ 

j=1 ... n 

B j F (i, j) , ∀ i ∈ { 1 . . . n } 

This set of linear equations is expressed in a succinct manner in 

Eq. (1) . 

(I − RF ) B = E, (1) 

where I is the identity matrix, R is a diagonal matrix containing 

the reflectivity index of each patch, B is the radiosity vector to be 

found, and E is the emission vector. F ( i, j ) is a number between 0 

and 1 expressing the form factor between patch i and j . This value 

indicates the fraction of the light power going from one to another. 

Therefore, the form factor matrix is a n × n matrix, where n is 

the number of patches in the scene. F can be efficiently computed 

using the hemi-cube algorithm [7] , but its memory requirements 

( O ( n 2 )) are often an obstacle when working with big models ( n > 

50.0 0 0). 

Eq. (1) can be solved using several approaches. For example, 

the operator M = (I − RF ) −1 can be calculated, which represents 

a global transport operator relating the emitted light with the fi- 

nal radiosity of the scene, B = M E. When F has a low numerical 

rank, factorization techniques can be used to efficiently compute 

an approximation of M [8] . On the other hand, M can also be ap- 

proximated using iterative methods such as Neumann series [4] . 

Another approach is to compute B by solving the linear system 

of equations iteratively, using methods such as Jacobi or Gauss–

Seidel [1] . Eq. (2) presents the radiosity resolution using the Jacobi 

iteration. Each iteration adds the radiosity of a new light bounce 

to the global radiosity result. 

B 

(i +1) = RF B 

(i ) + E, where B 

(0) = E (2) 

2.2. Correlation between scene characteristics and F properties 

The characteristics of the analyzed scene model have a direct 

impact on the numerical properties of the associated F matrix. 

For example, in scenes with a high spatial coherence, matrices in- 

volved in radiosity calculations have a low numerical rank [8] , be- 

cause close patches have a high probability of being affected sim- 

ilarly by the rest of the scene. This fact enables the application of 

factorization techniques to compute low rank approximations that 

can be stored in main memory. On the other hand, in scenes with 

a high occlusion factor between patches, F can be efficiently rep- 

resented using sparse representations. Two patches completely oc- 

cluded do not exchange energy directly, and if this property is sat- 

isfied for most pair of patches on a scene, the form factors matrix 

has most of its elements equal to 0. 

A sparse matrix is any matrix with enough zeros that it pays 

to take advantage of them [9] . Generally, using sparse representa- 

tions allows saving time or memory (usually both) by exploiting 

the number of zeros. Furthermore, these kind of matrices are ap- 

plied in problems where the use of full matrices is not possible 

due to memory limitations. 

The use of sparse matrices in radiosity calculations is still a 

subject of study. Gortler et al. [10] present the Wavelet Radios- 

ity method, which is based on wavelet theory. Expressing the ker- 

nel operating in a radiosity function in a wavelet basis leads to a 

sparse approximation of it. On the other side, Goel et al. [11] , Borel 

et al. [12] and Chelle and Andrieu [13] solve the radiosity prob- 

lem using iterative methods (like Gauss–Seidel) taking advantage 

of the sparsity of the form factors matrix. This property is present 

in the tested scenes (plant canopies), where there is a high occlu- 

sion level between distant polygons. 

Studying the correlation between scene characteristics and F 

properties can help assessing the election of the correct technique 

for a given scene or sets of scenes. In this regard, there are scenes 

where neither sparse nor low-rank matrices are generated. Also, 

both sparse and low-rank F matrices could be associated with 

some kinds of scenes. Fig. 1 presents a diagram associated with 

these ideas, using four example models, each one with different 

properties. A picture of the scene, the sparsity structure of its as- 

sociated F , and a plot of its singular values are shown. 

The upper left model of Fig. 1 corresponds to the plant canopy 

presented in [13] ; the matrix F is sparse and its associated sin- 

gular values decay is slow. The lower right scene is the Cornell 

box used in [8] ; the matrix F is full and its numerical rank is 

low. The other two models were generated to test the existence 

of other scenes with different properties. The upper right scene is 

composed of several rooms, and connecting corridors. The rooms 

are simple boxes composed of a fine mesh, which makes them nu- 

merically low-rank by their own. Each room “sees” almost nothing 

of the others. This makes its form factors matrix sparse, as it can 

be seen in the figure, but its singular values decay fast enough to 

be considered numerically low-rank. On the other hand, the lower 

left scene represents an anechoic chamber, which is a room de- 

signed to absorb wave reflections. For this, its walls are filled with 

pyramids pointing inward. This particular property makes F to be 

highly dense and not numerically low-rank. The experimental re- 

sults presented in Sections 3.1 and 4.2 suggest that city models 

have characteristics similar to plant canopy models. 

2.3. Neumann series 

Given an Operator T , its Neumann series is a series of the form 

∞ ∑ 

k =0 

T 

k 

The expression T k is a mathematical notation that means applying 

the operator T , k consecutive times. Supposing that T is a bounded 

operator and I the identity operator, if the Neumann series con- 

verges, then (I − T ) is invertible and its inverse is the series: 

(I − T ) −1 = 

∞ ∑ 

k =0 

T 

k = I + T + T 

2 + T 

3 + . . . 

This property can be used to calculate the radiosity [1] , by com- 

puting an approximate to the inverse of (I − RF ) through l itera- 

tions: 

(I − RF ) −1 ≈ I + RF + ( RF ) 2 + . . . + ( RF ) l 

In this series, ( RF ) i contains the information of the i th bounce of 

light between the surfaces in the scene. The main computational 

cost of this approach is the multiplication of matrices. Thus, if RF 

is sufficiently big, the method could be too expensive. 

[4] use a variant of this method to compute a global transport 

operator for radiance calculations. This operator expresses the re- 

lationship between the converged and incoming incident lighting. 

In this process, the matrices are compressed using the following 

strategy: at each step, all the coefficients below a certain threshold 

are removed. This results in sparse matrices, which allow speed- 

ing up the calculation. The computation is stopped when all the 

coefficients in ( RF ) i are smaller than the threshold. 

2.4. Urban radiative methods 

A previous work for reducing the urban radiosity formulation is 

the simplified radiosity algorithm (SRA) [3] . The basis of the sim- 

plification is grouping, for each sky direction, the main obstruc- 

tions that obscured each surface. Then, for a scene composed of n 
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