
Applied Soft Computing 26 (2015) 357–367

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Source code and design conformance, design pattern detection from
source code by classification approach

Abdullah Chihada, Saeed Jalili ∗, Seyed Mohammad Hossein Hasheminejad,
Mohammad Hossein Zangooei
SCS Lab., Computer Engineering Department, Electrical and Computer Engineering Faculty, Tarbiat Modares University, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 16 August 2012
Received in revised form 9 September 2014
Accepted 17 October 2014
Available online 27 October 2014

Keywords:
Design pattern detection
Machine learning
Support vector machine
Object-oriented metrics

a b s t r a c t

Nowadays, software designers attempt to employ design patterns in software design phase, but design
patterns may be not used in the implementation phase. Therefore, one of the challenging issues is con-
formance checking of source code and design, i.e., design patterns. In addition, after developing a system,
usually its documents are not maintained, so, identifying design pattern from source code can help to
achieve the design of an existing system as a reverse engineering task. The variant implementations (i.e.,
different source codes) of a design pattern make hard to detect the design pattern instances from the
source code. To address this issue, in this paper, we propose a new method which aims to map the design
pattern detection problem into a learning problem. The proposed design pattern detector is made by
learning from the information extracted from design pattern instances which normally include variant
implementations. To evaluate the proposed method, we applied it on open source codes to detect six
different design patterns. The experimental results show that the proposed method is promising and
effective.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A design pattern encapsulates a proven solution to a recur-
ring design problem [1]. In fact, each design pattern includes some
classes with relations like inheritances, aggregations and delega-
tions. Over many years, software developers suggest solutions for
satisfying design problems. Then, these experience-based solutions
are standardized and have been organized in the form of design
patterns. The use of design patterns in software development
can provide several advantages, such as increasing reusability,
modularization, quality, consistency between the design and the
implementation, and relationship between the design and the
implementation teams [1–4].

Design pattern detection from source code is an important task
in reverse engineering and can provide several advantages, such
as understanding the code of program when the documentation is
inadequate or absence, providing the design information to help to

∗ Corresponding author. Tel.: +98 021 8288 3374.
E-mail addresses: A.Chihada@Modares.ac.ir (A. Chihada), SJalili@Modares.ac.ir

(S. Jalili), SMH.Hasheminejad@Modares.ac.ir (S.M.H. Hasheminejad),
MH.Zangooei@Modares.ac.ir (M.H. Zangooei).

reconstruct software architecture, and providing ability to confor-
mance checking of source code and design [5–7].

Several methods for design pattern detection from source codes
have been proposed and we divided these methods into five cat-
egories: Logical reasoning, Similarity scoring, FCA-based methods,
Ontology-based methods, and Learning-based methods. In the follow-
ing, a brief description of each category is presented.

1.1. Logical reasoning

Kramer and Prechelt [8] developed the Pat system where both
design patterns and designs are represented in Prolog and the
Prolog engine do the actual search. The basic design informa-
tion itself is extracted from source code by a structural analysis
mechanism of commercial object-oriented CASE tools. Similar
method is proposed in [9] developing the SOUL environment in
which design patterns are described as Prolog predicates and pro-
gram constituents (classes, methods, fields, etc.) as facts. Smith
and Stotts [10] presented a System for Pattern Query and Recog-
nition (SPQR) which uses Elemental Design Patterns (EDPs) and
matches formalizations in a logical calculus. Fabry and Mens [11]
proposed a language-independent meta-level interface to extract
complex information about a structure of source code, and then
used the SOUL environment, to specify and identify design motifs.

http://dx.doi.org/10.1016/j.asoc.2014.10.027
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.10.027
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.10.027&domain=pdf
mailto:A.Chihada@Modares.ac.ir
mailto:SJalili@Modares.ac.ir
mailto:SMH.Hasheminejad@Modares.ac.ir
mailto:MH.Zangooei@Modares.ac.ir
dx.doi.org/10.1016/j.asoc.2014.10.027

358 A. Chihada et al. / Applied Soft Computing 26 (2015) 357–367

The prolog facts [12] present both static and dynamic information
of source code to achieve the detection of design patterns with high
accuracy. In [13,14], the advantage of fuzzy reasoning in dealing
with incomplete knowledge to identify variant implementations
of the same design pattern are used.

1.2. Similarity scoring

Tsantalis et al. [7] proposed a method based on similarity scoring
between vertices of design pattern graphs and a graph correspond
to a piece of program that reside in one or more inheritance hierar-
chies. This method has an ability to detect modified versions of
same design pattern. In [15], a similarity is calculated between
whole two graphs rather than their vertices, this approach adopts
a template matching method from computer vision by calculat-
ing the normalized cross correlation between pattern graph matrix
and system graph matrix. Kaczor et al. [16] proposed a method to
identify classes whose structure and organization match exactly
or approximately the structure and organization of design pat-
tern classes. The authors used two classical approximate string
matching algorithms based on automata simulation and bit-vector
processing. In [17–19], dynamic analysis is integrated with static
analysis to achieve high accuracy in design pattern detection.
Heuzeroth et al. [17] used dynamic analysis results of a given
system to decrease false positives of results obtained by static anal-
ysis. Dong et al. [18] presented a method in which design pattern
detection applied similar to [15] and then false positive results are
eliminated by behavioral and semantic analyses. Ng and Guéhéneuc
[19] introduced a trace analysis technique to identify occurrences
of creational and behavioral design patterns.

1.3. FCA-based methods

Tonella and Antoniol [20] proposed a method in which Formal
Concept Analysis (FCA) algorithm is used to infer the presence of
class groups which instantiate a common, repeated pattern, with-
out assumption on availability of any predefined design pattern
library. In [21,22], the concepts that have been calculated using
FCA algorithm are filtered by removing unconnected patterns and
merging equivalent ones. Then, the filtered concepts are compared
with a reference library of well-known patterns to be assigned as
one of the matched patterns. Tripathi et al. [23] proposed a model
which solves the problem of performance by using an efficient
algorithm called Concept-Matrix based Concepts Generation (CMCG)
for construction of concepts. In [6], just patterns consisted of four
classes or less have been detected because the detection of rela-
tively simple structures in relatively small pieces of source code
requires a lot of calculations.

1.4. Ontology-based methods

These methods use the Web Ontology Language (OWL) to struc-
ture source code knowledge. Dietrich and Elgar [24] proposed a
Web of Pattern system which formally defines design patterns by
using OWL, then, they used a prototype of a Java client that scans the
pattern definitions and detects patterns in Java software. Kirasi and
Basch [25] proposed a system that has three subsystems: parser,
OWL ontologies and analyzer. The parser subsystem translates the
input code to an XML tree. The OWL ontologies define patterns
and general programming concepts. The analyzer subsystem con-
structs instances of the input code as ontology individuals and asks
the reasoner to classify them.

1.5. Learning-based methods

Guéhéneuc et al. [26,27] used machine learning for obtaining
rules set called signatures for participant classes (roles) of the

design patterns. Then, they integrated these signatures with their
constraint-based tools suite to reduce the search space. The authors
learned just some individual classes of design patterns. One of
the important challenges in learning-based design pattern detec-
tion is what piece of code will be given to the learned model as
a candidate design pattern. Ferenc et al. [28] used another design
pattern tool to candidate some probable design patterns. They used
machine learning after structural matching phase for filtering out
as many as possible of false hits per pattern rather than classi-
fying them. In [29], the authors instead of analyzing source code
directly, they used Metrics and Architecture Reconstruction Plug-in
for Eclipse (MARPLE) tool to summarize the code into micro archi-
tecture that are EDP and Design Pattern Clues. After that, they used
neural networks and WEKA data mining algorithms [30] to classify
design patterns.

In our previous work [4], we proposed a novel learning-based
method to select the right design pattern for each design problem.
The goal of this paper is to improve limitations of learning based
methods, specially [26,27], for detecting design patterns. Therefore,
in this paper, we map the design pattern detection problem into a
learning problem, without using another design pattern detection
tool for preprocessing.

Compared with other learning-based methods [26–29], the pro-
posed method has a number of distinguishing characteristics: (1)
It has ability to detect multiple versions of design patterns (i.e.,
different implementations), (2) as opposed to the other learning-
based methods [26–29], it does not use a tool for preprocessing
but it proposes a novel, simple and low-cost preprocessing, (3) it
learns simultaneously all design pattern elements (i.e., all classes
playing role) of a design pattern sample instead of learning each
role separately [26,27], and (4) it uses a novel and high precision
learning method (i.e., classification method) called SVM-PHGS [31]
and customizes it to detect design patterns.

For evaluation, we use samples of design patterns gathered from
nine case studies which are manually detected by experts. We apply
some different data representation methods and machine learn-
ing algorithms on the samples. In our experiments, we use six
design patterns, Adapter, Builder, Composite, Factory Method, Iter-
ator, and Observer. The results reveal that for these patterns, the
proposed method can identify corresponding source code sam-
ples with acceptable Precision, Recall and small False Positive
rate.

The paper is organized as follows: Section 2 presents the back-
ground needed to understand the proposed method. The proposed
design pattern detection method is described in Section 3. The
experimental work and results are reported in Section 4 and Sec-
tion 5 presents a discussion on results and compares the proposed
method with the related works. Conclusion and future works are
given in Section 6.

2. Background

This section describes three categories which are necessary
for understanding the proposed method. At first, the definition
of design patterns is presented. Then, object-oriented metrics
which are used in the proposed method are introduced. Finally,
an overview of the classification methods is presented.

2.1. Design pattern definition

In general, a design pattern is described in a template consisting
of two sections, Problem Domain and Solution Domain. The Prob-
lem Domain describes the problem context where the pattern can
be applied. Analogously, the Solution Domain describes the struc-
ture and collaborations of the pattern solution being applied to

Download English Version:

https://daneshyari.com/en/article/495292

Download Persian Version:

https://daneshyari.com/article/495292

Daneshyari.com

https://daneshyari.com/en/article/495292
https://daneshyari.com/article/495292
https://daneshyari.com

