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a b s t r a c t 

The problem of covering a given 2D convex domain D with a C 1 random-looking curve C is considered. 

C within D is said to cover D up to ε > 0 if all points of D are within ε distance of C . This problem has 

applications, for example, in manufacturing, 3D printing, automated spray-painting, polishing, and also in 

devising a (pseudo) random patrol-path that will visit (i.e. cover) all of D using a sensor of ε distance 

span. Our distance bound approach enumerates the complete set of local distance extrema, enumeration 

that is used to provide a tight bound on the covering distance. This involves computing bi/tri-normals, or 

circles tangent to C at two/three different points, etc. A constructive algorithm is then proposed to iter- 

atively refine and modify C until C covers a given convex domain D and examples are given to illustrate 

the effectiveness of our algorithm. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Consider the problem of covering a given 2D domain by a 

random-looking parametric curve. Given a 2D domain D and a tol- 

erance ε > 0, the objective is to find a curve C within D such that 

each point in D is within ε distance of C . In other words, ∀ p ∈ D , 

∃ q ∈ C , such that ‖ p − q ‖ < ε. The need for covering of 2D domains 

by curves arises in many scenarios, viz., spray painting [2,16,21] , 

automated polishing [5,14,19] , tool path planning [7,9,18,22] , ren- 

dering [10] , surface inspection [17] , and 3D printing [13] . In spray 

painting and polishing, the tool is required to paint/polish each 

point of the surface being worked upon. In tool path planning, 

the trajectory of the tool needs to be computed. The tool moves 

along this path, removing material from the block and yielding the 

desired workpiece. In surface inspection, the probe must traverse 

over the surface and inspect all the points. In all the above appli- 

cations but [13] , the covering curve is ordered, i.e., it either follows 

the isocurves of the surface being covered or is obtained as a so- 

lution of some variational optimization. In this work, we consider 

the problem of covering by random-looking curves. Our algorithm 

chooses the points affecting the shape of the curve on the fly, be- 

cause the covering curve is constructed incrementally, adding new 

points in the regions that violate the ε-guarantee. 

Recent advances in 3D printing technology have enabled man- 

ufacturing of a plethora of new kinds of artifacts. In particular, 

depositing material along a random curve leads to artistic ob- 
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jects [13] . A specific scenario, wherein random covering is useful, 

is in making artistic containers with minimal amount of material. 

For instance, say it is required to design a container for storing ob- 

jects with minimal diameter greater than ε. This is achieved by 

having the surface of the container as the domain D and covering 

the same up to ε by a random curve C , which, when laid out by 

a 3D printer serves as the required container. Another application 

of random covering can be found in designing artistic patterns for 

fabrics and a photograph of such a carpet appears in Fig. 1 . Yet 

another photograph of an artifact consisting of random curves is 

shown in Fig. 2 , whose function is shown in Fig. 20 . 

Another interesting application of random covering is in design- 

ing paths for robot vacuum cleaners. A video from a proprietary 

source of such a robot in action can be seen in [1] . The creators of 

the robot claim that moving along a random path leads to better 

cleaning compared to moving along a systematic path, since many 

areas are visited more than once by the robot. 

The problem of covering surfaces by curves is well studied. El- 

ber et al. [9] proposed a formulation for covering surfaces by adap- 

tively extracting isocurves, wherein, the total length of the curve 

is minimized. Tam [22] proposed an algorithm for uniform cover- 

ing by curves along the isocurves of the surface. These are referred 

to as the scan-lines. The covering being uniform, a maximum dis- 

tance is maintained between each pair of adjacent scan-lines. An- 

tonio [2] address the problem of computing a trajectory for the 

spray applicator which minimizes the variation in the accumulated 

film thickness on the surface. This is done by formulating the prob- 

lem as a constrained variational optimization problem. Rambhad- 

ran et al. [21] cast the problem of optimizing the time profile for 

spray painting as a constrained variational problem. The same is 
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Fig. 1. A photograph of a carpet covered with random curves. A careful examination 

reveals that this pattern is not completely random. 

Fig. 2. A photograph of an artifact covered using random curves. 

then reduced to linear or quadratic programs. Cox et al. [7] use 

space-filling curves in the parameter domain of the surface to be 

machined. When mapped to the surface, this yields the tool path. 

Mizugaki [19] generate a planar Peano curve in the X-Y domain 

and map it to the surface of the workpiece via orthogonal projec- 

tion, in order to generate the path for metal-mold polishing robot. 

While there is a significant amount of work in covering surfaces 

with curves, to the best of our knowledge, only [13] examined the 

question of random covering. The main contributions of this work 

are twofold: 

1. A method to evaluate the set of precise local extrema of dis- 

tance from a curve within a 2D domain. 

2. An algorithm which uses the above set of local distance ex- 

trema to iteratively construct a random-looking curve which 

covers the domain with ε-guarantee, for any given ε > 0. 

Our framework constructs C , in an iterative, random-looking 

manner. In each iteration, the set of local extrema of distance from 

C is computed and is used to refine C . In Section 2 , we explain 

how these points of local extremum are computed. In Section 3 , 

the overall algorithm is presented and shown to terminate. Several 

optimizations related to the running times and memory usage of 

our algorithm are proposed in Section 4 . Results from the imple- 

mentation of our algorithm in the IRIT [8] modeling environment 

are given in Section 5 . We conclude the paper in Section 6 , and 

also make remarks on possible extensions of this work. 

2. Finding all distance local extrema from C 

In this section, we formalize our distance bound approach by 

enumerating all the local extrema of the distance from C . We as- 

sume C is regular and C 1 continuous henceforth. The enumeration 

is done via two major cases. Section 2.1 analyzes the case when a 

local extremum point lies on the boundary, ∂D , of D . In Section 2.2 , 

we explicate the case when the local extremum lies in the interior, 

D 

o , of D . The points of local extrema thus computed must be sub- 

jected to a validity criteria, failing which, they are discarded. This 

is explained in Section 2.3 . 

In this work, D is assumed to be convex. Let closed interval I be 

the domain of the parametrization of C and t denote its parame- 

ter. The curve C is chosen to be open rather than closed since the 

ability to control the start and end position of C can add a useful 

degree of freedom, especially in highly complex and narrow con- 

tainers and possibly in periodic tile covering. We will denote the 

Euclidean distance between two points p, q ∈ D by dist ( p, q ). 

Definition 1. The distance between a point p ∈ D and C is the 

distance between p and the point in C which is closest to p . We 

will denote this distance, again, by dist ( p, C ). In other words, 

dist(p, C) = min 

t∈ I 
dist(p, C(t)) . 

Definition 2. Given a 2D domain D , a curve C ⊂ D and ε > 0, C is 

said to cover D up to ε if ∀ p ∈ D, dist ( p, C ) < ε. 

Equivalently, C ⊂ D is said to cover D up to ε if the farthest point 

of D from C is at distance less than ε. Such a point is a global 

extremum of the distance from C . Hence, if C covers D up to ε, 

then for each point p ∈ D , ∃ q ∈ C such that dist ( p, q ) < ε. 

Definition 3. Given a 2D domain D and a curve C ⊂ D , a point p ∈ 

D is said to be a local extrema of distance from C if there exists 

a neighborhood N ⊂ D of p such that either d ( p, C ) ≥ d ( q, C ), ∀ q ∈ 

N or d ( p, C ) ≤ d ( q, C ), ∀ q ∈ N . 

Our algorithm constructs the covering curve C iteratively and 

uses the (uniform) quadratic B-spline [6] representation for C as 

well as ∂D . ∂D is assumed to be piecewise C 1 continuous while C 

is C 1 continuous. Let C i denote the curve at iteration i . In iteration 

i , a subset of the local extrema of the distance from C i to points 

p ∈ D affects the shape of C i +1 . The local extrema for dist ( p, C i ) 

are computed by solving a set of algebraic constraints as explained 

later in this section. If the farthest point from C i is at a distance 

less than ε, the algorithm terminates. The farthest point in D from 

curve C is given by 

p 0 = arg max 
p∈ D 

dist(p, C) , 

= arg max 
p∈ D 

{ 

min 

t∈ I 
dist(p, C(t)) 

} 

. 

The following lemma characterizes the set of local extrema of 

distance from C . Recall that D 

o denotes the interior of D and ∂D 

the boundary of D . Then, 

Lemma 4. The set of local extrema of the distance from a C 1 curve C 

is completely enumerated as follows. If p 0 is a local extremum, then 

one of the following holds. 

1. p 0 ∈ D 

o and p 0 is the center of a maximally inscribed circle with 

locally maximal radius which makes tangential/end-point contact 

with C at either two or three points. 

2. p 0 ∈ ∂D and p 0 is the center of a maximally inscribed circle with 

locally maximal radius which makes tangential/end-point contact 

with C at either one or two points. 

Proof. It is known that the local extrema of distance functions oc- 

cur on the Medial Axis [3] . In our case, the set of local extrema of 

the distances from C occur on the Medial Axis of C . Further, the 

local extrema points of the Medial axis of some shape are centers 

of either bi-tangent or tri-tangent circles [20] to that shape. Hence, 

in our case, if a local extremum p 0 ∈ D 

o , it is the center of a circle 

which makes contact with C at either two or three points and if p 0 
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