
Applied Soft Computing 26 (2015) 378–389

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

Self-adaptive check and repair operator-based particle swarm
optimization for the multidimensional knapsack problem

Mingchang Chih ∗

System Development Center, National Chung-Shan Institute of Science and Technology, Lungtan Township, Taoyuan 32546, Taiwan, ROC

a r t i c l e i n f o

Article history:
Received 16 May 2014
Received in revised form 20 October 2014
Accepted 22 October 2014
Available online 31 October 2014

Keywords:
Combinatorial optimization
Self-adaptive check and repair
Multidimensional knapsack problem
Particle swarm optimization
Pseudo-utility ratio
OR-Library

a b s t r a c t

The multidimensional knapsack problem (MKP) is a combinatorial optimization problem belonging to the
class of NP-hard problems. This study proposes a novel self-adaptive check and repair operator (SACRO)
combined with particle swarm optimization (PSO) to solve the MKP. The traditional check and repair oper-
ator (CRO) uses a unique pseudo-utility ratio, whereas SACRO dynamically and automatically changes
the alternative pseudo-utility ratio as the PSO algorithm runs. Two existing PSO algorithms are used
as the foundation to support the novel SACRO methods, the proposed SACRO-based algorithms were
tested using 137 benchmark problems from the OR-Library to validate and demonstrate the efficiency
of SACRO idea. The results were compared with those of other population-based algorithms. Simula-
tion and evaluation results show that SACRO is more competitive and robust than the traditional CRO.
The proposed SACRO-based algorithms rival other state-of-the-art PSO and other algorithms. There-
fore, changing different types of pseudo-utility ratios produces solutions with better results in solving
MKP. Moreover, SACRO can be combined with other population-based optimization algorithms to solve
constrained optimization problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The 0–1 multidimensional knapsack problem (MKP) is a well-
known NP-hard optimization problem. MKP is one of the most
intensively studied discrete programming problems [1]. Many
practical problems are commonly modeled as MKPs [2,3]. MKP can
be mathematically formulated as follows:

max z =
n∑

j=1

cjyj (1)

s.t.

n∑
j=1

aijyj ≤ bi, i = 1, 2, . . ., m, (2)

yj ∈ {0, 1}, j = 1, 2, . . ., n, (3)

where n is the number of items and m is the number of knapsack
constraints, with the capacity bi for i = 1, 2,. . .,m. Each item j requires
aij units of resource consumption in the ith knapsack and yields cj
units of profit upon inclusion. The goal is to find an item subset

∗ Tel.: +886 37331862
E-mail address: d927805@oz.nthu.edu.tw

that yields the maximum profit without exceeding the resource
capacity. All entries are naturally nonnegative.

MKP is a combinatorial optimization problem [4]. From the
perspective of computation, the different proposed algorithms for
approaching the MKP can be broadly grouped into two classes:
exact algorithms and heuristic/metaheuristic algorithms. Exact
techniques included the Lagrangian methods, surrogate relax-
ation techniques, special enumeration techniques and reduction
schemes, and the branch-and-bound methods. Exact algorithms
are not practical for MKP because the search space grows expo-
nentially with the problem size and exhaustive search is infeasible.
Therefore, several modern heuristic algorithms, such as simulated
annealing [5], Tabu search [6], genetic algorithms [7], ant colony
algorithms [8], particle swarm optimization (PSO) [9,10], and other
heuristics [11], were developed to solve MKP.

Many works have not successfully proved that crude heuristic
algorithms were an effective tool for the MKP. Most of them cannot
solve large-scale problems effectively and efficiently. Very recently,
some works [12,13] proposed and designed heuristics with new
repair operator particularly for large-scale problems by restricting
the algorithms to search only the feasible space. Due to the signif-
icance of the MKP in academic research and real applications, it is
important to develop novel algorithms with satisfactory perform-
ances.

http://dx.doi.org/10.1016/j.asoc.2014.10.030
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.10.030
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.10.030&domain=pdf
mailto:d927805@oz.nthu.edu.tw
dx.doi.org/10.1016/j.asoc.2014.10.030

M. Chih / Applied Soft Computing 26 (2015) 378–389 379

PSO is a promising alternative to other population-based
optimization algorithms [14–18] for solving combinatorial opti-
mization problems. This conventional heuristic approach was
designed by Kennedy and Eberhart [19] to optimize various con-
tinuous nonlinear functions. PSO is a random search algorithm that
simulates natural evolutionary processes to solve complex opti-
mization problems. The PSO prototype is restricted to the real
number space. However, many optimization problems are set in
a space with discrete or qualitative distinctions between variables.
Kennedy and Eberhart [20] developed a discrete version of the algo-
rithm to address this problem.

PSO has been successfully applied to various areas, such as the
traveling salesman problem [21], inspection policy [22], classifi-
cation problem [23], economic statistical control chart design [24],
reliability networks [25], multi-modal problems [26], feature selec-
tion [27], multi-objective optimization [28], supplier selection [29],
production design and manufacturing [30], structure design [31],
vehicle crashworthiness [32], and MKP [33].

This study proposes a self-adaptive repair mechanism to con-
vert infeasible solutions to feasible ones for PSO. The proposed
mechanism and algorithms are compared with state-of-the-art PSO
algorithms to solve the MKP using the available test datasets in the
OR-Library [34].

The rest of the paper is organized as follows: Section 2 provides
the basic concepts of PSO algorithm. The proposed self-adaptive
repair mechanism and PSO algorithms are presented in Sections 3
and 4, respectively. Section 5 summarizes the simulation and eval-
uation results of the proposed algorithms on the test datasets. The
conclusion is presented in Section 6.

2. Background

PSO was first developed by Kennedy and Eberhart [19] based on
the metaphors of social interaction and communication (e.g., fish
schooling and bird flocking). PSO uses the collaboration between
simple search agents called particles in a population to find the
optima in a particular search space, and it is effective in optimizing
difficult multidimensional problems in different fields [35,36].

PSO combines local and global searches to obtain high search
efficiency. Its algorithm is initialized in a population of random
particles with random positions and velocities inside the problem
space. PSO subsequently searches for optima by updating succes-
sive generations. Each particle is updated during each iteration
according to the two “best” values. The first value, called pbest,
is the best solution (fitness) achieved by the particle. The other
“best” value tracked by PSO is the current best value obtained by
any particle in the population. This best value is the global best and
is designated as gbest. When a particle considers parts of the popu-
lation as its topological neighbors, the best value is a local best, i.e.,
lbest. After the two best values are identified, the particle updates
its velocity and position according to the following equations in
continuous PSO:

vt
ij = w · vt−1

ij
+ c1 · Rand() · (pt−1

ij
− xt−1

ij
) + c2 · Rand() · (gt−1

ij
− xt−1

ij
),

(4)

and

xt
ij = xt−1

ij
+ vt

ij, (5)

where vt
ij

is the velocity of ith particle at jth dimension (decision

variable) in tth iteration; xt−1
ij

is the current particle (solution);

pt−1
ij

and gt−1
ij

are pbest and gbest, respectively; and Rand() is a ran-
dom number between [0,1]. c1 and c2 are learning factors, and the
value of (c1 + c2) is usually limited to 4 [35,36]. PSO is affected by
several parameters, such as the number of population members

(m), cognition learning factor (c1), social learning factor (c2), inertia
weight (w), and number of iterations or CPU time.

The optimum solution in population-based optimization meth-
ods is determined by gaining proper control of global and local
explorations. Shi and Eberhart [37] found a significant improve-
ment in the performance of PSO with a linearly varying inertia
weight over generations. The mathematical representation of this
method is given by

w = (wmax − wmin)
tmax − t

tmax
+ wmin. (6)

Ratnweera et al. [38] introduced time-varying acceleration
coefficients (TVACs) in PSO with learning factors. TVACs enhance
the global search in the early stages of optimization and encourage
the particles to converge toward the global optima at the end of the
search. TVACs can be mathematically represented as

c1 = (c1f − c1i)
t − 1
tmax

+ c1i, (7)

c2 = (c2f − c2i)
t − 1
tmax

+ c2i. (8)

Shi and Eberhart [37] observed that the optimal solution for
most problems could be improved by varying the value of w from
0.9 to 0.4 throughout the search. Ratnweera et al. [38] found that
the optimum solution for most benchmarks could be improved by
changing c1 from 2.5 to 0.5 and c2 from 0.5 to 2.5 throughout the
search.

Chih et al. [33] combined the time-varying inertia weight (w)
and time-varying learning factors (c1, c2) of TVACs with their pro-
posed PSO algorithms. The proposed velocity updating equation
can be expressed as:

vt
ij = w · vt−1

ij
+

{
(c1f − c1i)

t − 1
tmax

+ c1i

}
· Rand() · (pt−1

ij
− xt−1

ij
)

+
{

(c2f − c2i)
t − 1
tmax

+ c2i

}
· Rand() · (gt−1

ij
− xt−1

ij
) (9)

PSO was initially introduced to optimize various continuous
nonlinear functions; therefore, the major obstacle of using PSO in
practical applications is its continuous nature. Kennedy and Eber-
hart [20] developed a discrete binary version of PSO called BPSO
to resolve this drawback. The particle in BPSO is characterized by a
binary solution presentation, and the velocity must be transformed
toward the change in probability for each binary dimension to take
a value of one.

The position update equation has been recently introduced into
BPSO [33,39]. It is based on the position update equation for direct
continuous optimization. If the velocity bounds are −Vmax and Vmax,
then the term xt−1

ij
+ vt

ij
is bound between (0 − Vmax = − Vmax) and

(1 + Vmax) because xt
ij

in Eq. (5) must have a value of 0 or 1. Therefore,
the position update equation can be represented as:

xt
ij =

{
1, if U(−Vmax, 1 + Vmax) < xt−1

ij
+ vt

ij
;

0 otherwise.
(10)

U(0, 1) = U(−Vmax, 1 + Vmax) + Vmax

(1 + 2Vmax)
.

Eq. (10) can be rewritten as

xt
ij =

⎧⎨
⎩ 1, if U(0, 1) <

xt−1
ij

+ vt
ij

+ Vmax

1 + 2Vmax
,

0 otherwise.

(11)

where U(0, 1) is a random number between [0,1], and U(− Vmax,
1 + Vmax) is a random number between [− Vmax, 1 + Vmax].

Download English Version:

https://daneshyari.com/en/article/495294

Download Persian Version:

https://daneshyari.com/article/495294

Daneshyari.com

https://daneshyari.com/en/article/495294
https://daneshyari.com/article/495294
https://daneshyari.com

