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a  b  s  t  r  a  c  t

The  multidimensional  knapsack  problem  (MKP)  is a  combinatorial  optimization  problem  belonging  to  the
class  of  NP-hard  problems.  This  study  proposes  a novel  self-adaptive  check  and  repair  operator  (SACRO)
combined  with  particle  swarm  optimization  (PSO)  to solve  the  MKP.  The  traditional  check  and  repair  oper-
ator  (CRO)  uses  a  unique  pseudo-utility  ratio,  whereas  SACRO  dynamically  and  automatically  changes
the  alternative  pseudo-utility  ratio  as  the  PSO  algorithm  runs.  Two  existing  PSO  algorithms  are  used
as  the  foundation  to  support  the novel  SACRO  methods,  the proposed  SACRO-based  algorithms  were
tested  using  137  benchmark  problems  from  the  OR-Library  to validate  and  demonstrate  the  efficiency
of  SACRO  idea.  The  results  were  compared  with  those  of other  population-based  algorithms.  Simula-
tion  and evaluation  results  show  that  SACRO  is more  competitive  and robust  than  the traditional  CRO.
The  proposed  SACRO-based  algorithms  rival  other  state-of-the-art  PSO  and other  algorithms.  There-
fore,  changing  different  types  of  pseudo-utility  ratios  produces  solutions  with  better  results  in  solving
MKP.  Moreover,  SACRO  can be  combined  with  other  population-based  optimization  algorithms  to  solve
constrained  optimization  problems.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The 0–1 multidimensional knapsack problem (MKP) is a well-
known NP-hard optimization problem. MKP  is one of the most
intensively studied discrete programming problems [1]. Many
practical problems are commonly modeled as MKPs [2,3]. MKP  can
be mathematically formulated as follows:

max  z =
n∑

j=1

cjyj (1)

s.t.

n∑
j=1

aijyj ≤ bi, i = 1, 2, . . .,  m,  (2)

yj ∈ {0, 1}, j = 1, 2, . . .,  n, (3)

where n is the number of items and m is the number of knapsack
constraints, with the capacity bi for i = 1, 2,. . .,m.  Each item j requires
aij units of resource consumption in the ith knapsack and yields cj
units of profit upon inclusion. The goal is to find an item subset
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that yields the maximum profit without exceeding the resource
capacity. All entries are naturally nonnegative.

MKP  is a combinatorial optimization problem [4]. From the
perspective of computation, the different proposed algorithms for
approaching the MKP  can be broadly grouped into two  classes:
exact algorithms and heuristic/metaheuristic algorithms. Exact
techniques included the Lagrangian methods, surrogate relax-
ation techniques, special enumeration techniques and reduction
schemes, and the branch-and-bound methods. Exact algorithms
are not practical for MKP  because the search space grows expo-
nentially with the problem size and exhaustive search is infeasible.
Therefore, several modern heuristic algorithms, such as simulated
annealing [5], Tabu search [6], genetic algorithms [7], ant colony
algorithms [8], particle swarm optimization (PSO) [9,10], and other
heuristics [11], were developed to solve MKP.

Many works have not successfully proved that crude heuristic
algorithms were an effective tool for the MKP. Most of them cannot
solve large-scale problems effectively and efficiently. Very recently,
some works [12,13] proposed and designed heuristics with new
repair operator particularly for large-scale problems by restricting
the algorithms to search only the feasible space. Due to the signif-
icance of the MKP  in academic research and real applications, it is
important to develop novel algorithms with satisfactory perform-
ances.
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PSO is a promising alternative to other population-based
optimization algorithms [14–18] for solving combinatorial opti-
mization problems. This conventional heuristic approach was
designed by Kennedy and Eberhart [19] to optimize various con-
tinuous nonlinear functions. PSO is a random search algorithm that
simulates natural evolutionary processes to solve complex opti-
mization problems. The PSO prototype is restricted to the real
number space. However, many optimization problems are set in
a space with discrete or qualitative distinctions between variables.
Kennedy and Eberhart [20] developed a discrete version of the algo-
rithm to address this problem.

PSO has been successfully applied to various areas, such as the
traveling salesman problem [21], inspection policy [22], classifi-
cation problem [23], economic statistical control chart design [24],
reliability networks [25], multi-modal problems [26], feature selec-
tion [27], multi-objective optimization [28], supplier selection [29],
production design and manufacturing [30], structure design [31],
vehicle crashworthiness [32], and MKP  [33].

This study proposes a self-adaptive repair mechanism to con-
vert infeasible solutions to feasible ones for PSO. The proposed
mechanism and algorithms are compared with state-of-the-art PSO
algorithms to solve the MKP  using the available test datasets in the
OR-Library [34].

The rest of the paper is organized as follows: Section 2 provides
the basic concepts of PSO algorithm. The proposed self-adaptive
repair mechanism and PSO algorithms are presented in Sections 3
and 4, respectively. Section 5 summarizes the simulation and eval-
uation results of the proposed algorithms on the test datasets. The
conclusion is presented in Section 6.

2. Background

PSO was first developed by Kennedy and Eberhart [19] based on
the metaphors of social interaction and communication (e.g., fish
schooling and bird flocking). PSO uses the collaboration between
simple search agents called particles in a population to find the
optima in a particular search space, and it is effective in optimizing
difficult multidimensional problems in different fields [35,36].

PSO combines local and global searches to obtain high search
efficiency. Its algorithm is initialized in a population of random
particles with random positions and velocities inside the problem
space. PSO subsequently searches for optima by updating succes-
sive generations. Each particle is updated during each iteration
according to the two “best” values. The first value, called pbest,
is the best solution (fitness) achieved by the particle. The other
“best” value tracked by PSO is the current best value obtained by
any particle in the population. This best value is the global best and
is designated as gbest. When a particle considers parts of the popu-
lation as its topological neighbors, the best value is a local best, i.e.,
lbest. After the two best values are identified, the particle updates
its velocity and position according to the following equations in
continuous PSO:

vt
ij = w · vt−1

ij
+ c1 · Rand() · (pt−1

ij
− xt−1

ij
) + c2 · Rand() · (gt−1

ij
− xt−1

ij
),

(4)

and

xt
ij = xt−1

ij
+ vt

ij, (5)

where vt
ij

is the velocity of ith particle at jth dimension (decision

variable) in tth iteration; xt−1
ij

is the current particle (solution);

pt−1
ij

and gt−1
ij

are pbest and gbest, respectively; and Rand() is a ran-
dom number between [0,1]. c1 and c2 are learning factors, and the
value of (c1 + c2) is usually limited to 4 [35,36]. PSO is affected by
several parameters, such as the number of population members

(m), cognition learning factor (c1), social learning factor (c2), inertia
weight (w), and number of iterations or CPU time.

The optimum solution in population-based optimization meth-
ods is determined by gaining proper control of global and local
explorations. Shi and Eberhart [37] found a significant improve-
ment in the performance of PSO with a linearly varying inertia
weight over generations. The mathematical representation of this
method is given by

w = (wmax − wmin)
tmax − t

tmax
+ wmin. (6)

Ratnweera et al. [38] introduced time-varying acceleration
coefficients (TVACs) in PSO with learning factors. TVACs enhance
the global search in the early stages of optimization and encourage
the particles to converge toward the global optima at the end of the
search. TVACs can be mathematically represented as

c1 = (c1f − c1i)
t − 1
tmax

+ c1i, (7)

c2 = (c2f − c2i)
t − 1
tmax

+ c2i. (8)

Shi and Eberhart [37] observed that the optimal solution for
most problems could be improved by varying the value of w from
0.9 to 0.4 throughout the search. Ratnweera et al. [38] found that
the optimum solution for most benchmarks could be improved by
changing c1 from 2.5 to 0.5 and c2 from 0.5 to 2.5 throughout the
search.

Chih et al. [33] combined the time-varying inertia weight (w)
and time-varying learning factors (c1, c2) of TVACs with their pro-
posed PSO algorithms. The proposed velocity updating equation
can be expressed as:

vt
ij = w · vt−1

ij
+

{
(c1f − c1i)

t − 1
tmax

+ c1i

}
· Rand() · (pt−1

ij
− xt−1

ij
)

+
{

(c2f − c2i)
t − 1
tmax

+ c2i

}
· Rand() · (gt−1

ij
− xt−1

ij
) (9)

PSO was initially introduced to optimize various continuous
nonlinear functions; therefore, the major obstacle of using PSO in
practical applications is its continuous nature. Kennedy and Eber-
hart [20] developed a discrete binary version of PSO called BPSO
to resolve this drawback. The particle in BPSO is characterized by a
binary solution presentation, and the velocity must be transformed
toward the change in probability for each binary dimension to take
a value of one.

The position update equation has been recently introduced into
BPSO [33,39]. It is based on the position update equation for direct
continuous optimization. If the velocity bounds are −Vmax and Vmax,
then the term xt−1

ij
+ vt

ij
is bound between (0 − Vmax = − Vmax) and

(1 + Vmax) because xt
ij

in Eq. (5) must have a value of 0 or 1. Therefore,
the position update equation can be represented as:

xt
ij =

{
1, if U(−Vmax, 1 + Vmax) < xt−1

ij
+ vt

ij
;

0 otherwise.
(10)

U(0, 1) = U(−Vmax, 1 + Vmax) + Vmax

(1 + 2Vmax)
.

Eq. (10) can be rewritten as

xt
ij =

⎧⎨
⎩ 1, if U(0, 1) <

xt−1
ij

+ vt
ij

+ Vmax

1 + 2Vmax
,

0 otherwise.

(11)

where U(0, 1) is a random number between [0,1], and U(− Vmax,
1 + Vmax) is a random number between [− Vmax, 1 + Vmax].
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