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a b s t r a c t

This paper presents a methodology for designing prismatic springs of non-circular coil shape and non-
prismatic springs of circular coil shape using analytical and numerical methods. To start with, simple
analytical formulations for obtaining the axial deformation of the springs under axial load have been
demonstrated. Next, the processes of obtaining CAD models of the springs and their subsequent finite
element analysis (FEA) in commercial softwares have been outlined. In the third part, the different
springs have been compared with a common cylindrical spring and their merits compared to a common
spring have been demonstrated. Next, a fairly accurate analytical formulation (with maximum error of
�7–8%) for obtaining the value and location of maximum shear stress for all the springs has been demon-
strated. Next, two aspects of non-prismatic springs under dynamic loads, viz. damping introduced in a
vibrating system and contribution of the spring to the equivalent mass in a one dimensional vibrating
spring mass system due to shape of the spring have been discussed. The last part involves an analytical
formulation for the linear elastic buckling of two springs with circular coil shapes. For the majority of the
work, emphasis has been on obtaining and using closed form analytical expressions for different quanti-
ties while numerical techniques such as FEA have been used for validation of the same.
� 2017 Society for Computational Design and Engineering. Publishing Services by Elsevier. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The helical spring is one of the most fundamental flexible
mechanical elements and mostly used in several industrial applica-
tions like balances, brakes, vehicle suspensions, and engine valves
to satisfy functions like applying forces, storing or absorbing
energy, providing the mechanical system with the flexibility and
maintaining a force or a pressure. In addition, helical springs serve
as the elastic member for most common types of vibration absor-
bers. The most commonly known helical spring, used in these
applications, is presented as a cylindrical three-dimensional
curved beam, characterized by its spiral shape and its constant cur-
vatures along the axis. For these kinds of springs the demand of
space in both lateral and vertical directions is undeniable. But for
some very specialized applications, where there are lateral and
(or) vertical space constraints, common springs may not be imple-
mented with much success due to unwanted increase in stiffness
mainly due to usage of multiple springs. This can be avoided by

the usage of two special kinds of springs, viz. springs with non-
circular shape to cater to restrictions in lateral space and springs
of circular coil shape but non-prismatic profile to cater to restric-
tions in vertical space. Among the non-circular coil springs, the
rectangular springs are used in light firearms. Among the non-
prismatic springs, conical springs are generally used in applications
requiring low solid height and increased resistance to surging, like
automotive engines, large stamping presses, lawn mowers, medi-
cal devices, cell phones, electronics and sensitive instrumentation
devices and volute shaped springs offer more lateral stability and
less tendency to buckle than regular compression springs. Also,
the possibility of resonance and excessive vibration (or surging)
is reduced because volute springs have a uniform pitch, more
damping due to coil structural (see Section 6.1) and an increasing
natural period of vibration (instead of a constant period of vibra-
tion as in a cylindrical spring) as each coil closes.

For design and selection of springs for practical purposes, the
deflection of the spring under axial load and maximum stresses
induced are two major factors. Stress analysis is one of the main
themes of research in helical springs. Investigations in this area
began with the pioneering works of Ancker and Goodier (1958a,
b), who used the boundary element method (not to be confused
with the modern boundary element method) to apply theory of
elasticity and to develop an approximate result to satisfy governing
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equations and boundary conditions along the surface of the coil.
For small deformations of the spring, Wahl (1944) considered the
wire of the spring as a round bar subjected to shear and torsion.
The coupling between axial and torsional deformations was
neglected in Wahl’s approach and a correction factor was used to
account for the curvature of the spring. Nagaya (1987) solved
equations governing the distribution of stresses in the spring and
developed an analytical approach but the aforesaid solution was
applicable only for a few types of cross sections (circular, rectangu-
lar, etc.). Kamiya and Kita (1990) treated this problem also using
boundary element method, and the analysis was limited to springs
of small helix angle. Also, Cook (1990) analyzed the same type of
springs by using finite element method and showed the limitation
of the work associated with the methodology’s negligence to helix
angle of the spring. Haktanir (1994) solved the same problem by an
analytical method to determinate the static stresses in the spring.
Jiang and Henshall (2000) developed an approach based on the
finite element method to analyze the stresses in a circular cross
section helical spring by developing accurate boundary conditions
and using finite element analysis. Fakhreddine, Mohamed, Said,
Abderrazek, and Mohamed (2005) presented an efficient two-
node finite element with six degrees of freedom per node, capable
of modeling the total behavior of a helical spring.

In the approaches cited above, all the analyses were done con-
sidering only circular coil shaped prismatic springs of constant coil
diameter. And the analyses and methods cited, albeit accurate, may
not be easily used in cases where the spring coil is non-circular or
the coil dimensions vary axially. But, as discussed before, springs of
non-circular coil shape or non-prismatic springs find applications
in practical cases when there is a limitation in space. Therefore,
in the current work, analytical methods of obtaining the stress
and deflection characteristics, two main design checkpoints for
springs, have been attempted and the results obtained through
the methodologies so developed have been compared with an
independent method, FEA, to validate them.

The organization of the current work is as follows. Section 2
gives the analytical formulation for the deflection of prismatic
and non prismatic springs under axial loads and benchmarks them
against FEA. In Section 3, a brief discussion is presented on CAD
representation of the springs in commercial softwares and FE anal-
ysis of the same using commercial softwares. In Section 4, the var-
ious springs discussed in Section 2 have been compared with a
common prismatic spring with circular coils with an aim to point
out the merits of the different springs. In Section 5, analytical
expressions for obtaining the maximum stresses in the different
springs have been presented and compared with FE analyses done
using commercial softwares. The final section (Section 6) deals
with the properties of the non-prismatic springs under dynamic
loads and comparison of linear elastic buckling strengths of conical
and right cylindrical springs of equivalent mass.

2. Deflection analysis of springs

In this section analytical methods for finding the deflections of
different helical springs with constant pitch and wire diameter
have been attempted. The formulation involves the usage of basic
equations of solid mechanics, equilibrium of forces, and basic geo-
metrical relationships. The results obtained from the formulations
have been compared to those obtained from FEA of CAD models of
the corresponding springs.

2.1. Deflection analysis of prismatic springs with non-circular coil
shape

In this section, the analytical formulation for two varieties of
prismatic springs with non-circular coil shape have been

attempted. The prismatic springs have a uniform cross section
through out length.

2.1.1. Rectangular spring
In this section, a prismatic spring with a rectangular coil shape

bounded by semicircles on the smaller sides (see Fig. 1a) has been
attempted. The spring, although having an uncommon shape finds
application in various mechanical equipments like guns and rifles.
The basic dimensions of the profile of the spring is shown in Fig. 1.
The length is 2a and the center of the circular arcs on either sides
are coincident with the midpoint of the corresponding sides. The
symbols as represented here will be followed throughout the sec-
tion. It is seen that the profile is symmetric about each of the quad-
rants of axes on the plane with the origin coinciding with the
geometric center of the figure. Advantage of this symmetry, shown
in Fig. 1b, involving only the quarter of the coil shape is taken by
deriving the relations for a quarter only and multiplying it by 4
for each of the coils. The straight part of the spring, shown in
Fig. 1b, subtends an angle / ¼ tan�1 a

r at the center of the coil.
The force F, acting vertically at the center, induces both bending
and torsional moment on a section of the coil. Expressions of
moments in the circular and straight parts are different and are
shown separately. On a section of the spring at a distance x from
the vertical center line (see Fig. 1b), the bending and torsional
moments, Mx and Tx, induced by the force on the straight part are:

Mx ¼ Fr tanðhÞ
Tx ¼ Fr

� �
ð1Þ

Also, from Fig. 2,

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ r2 þ 2ar sinðhÞÞ

q
ð2Þ

/ ¼ sin�1 r cosðhÞ
p

ð3Þ

Using above the values of bending and torsional moments, Mh and
Th, induced by the force on the curved part are:

Mh ¼ Fp sinðhþ /Þ
Th ¼ Fp cosðhþ /Þ

� �
ð4Þ

The total strain energy of the section shown in Fig. 2 is given by
the sum of the strain energies due to the moments in the two sep-
arate sections MN and NQ. Using Eqs. (1) and (4)

Usector ¼
Z a

0

M2
xdx
2EI

þ
Z a

0

T2
xdx
2GJ

þ
Z p

2

0

M2
hdh
2EI

þ
Z p

2

0

T2
hdh
2GJ

ð5Þ

where I and J represent the bending and torsional moments of iner-

tia of the section of the wire with diameter d. I ¼ pd4
64 , J ¼ pd4

32 . E and G
represent the Young’s modulus and modulus of rigidity of the
spring wire material. The total strain energy of the spring with Nr

number of active coils1 may be given from Eq. (5) as
UTotal ¼ 4NrUsector , and the axial deflection of the spring due to the
axial load F as shown in Fig. 2, may be given as d ¼ @UTotal

@F , following
the well known Castigliano’s theorem. A comparison of the above
formulation and FEA of the same case is given below in Table 1. It
has been assumed that E ¼ 210 GPa for steel, the value of Poisson’s
ratio has been taken as m ¼ 0:25 and wire diameter was taken as
3 mm. The spring under consideration has Nr ¼ 7:5 for 8 complete
turns with ground ends, and is under 15 N of axial load. From Table 1,
it is seen that the analytical formulation for the deflection is in
agreement with the FEA. Also, the closed form expression for the

1 The number of active coils in a compression spring is generally less than the
physical number of coils in the spring. It depends on the end conditions of the spring
and a few other factors. For more details see the textbooks by Shigley (1972) or
Bhandari (2010).
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