
H O S T E D  B Y Available online at www.sciencedirect.com

Journal of Computational Design and Engineering 3 (2016) 337–348

Data-mining modeling for the prediction of wear on forming-taps in the
threading of steel components

Andres Bustilloa,n, Luis N. López de Lacalleb, Asier Fernández-Valdivielsob, Pedro Santosa

aDepartment of Civil Engineering, University of Burgos, Burgos, Spain
bDepartment of Mechanical Engineering, University of the Basque Country UPV/EHU, Bilbao, Spain

Received 4 March 2016; received in revised form 16 June 2016; accepted 26 June 2016
Available online 30 June 2016

Abstract

An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first
objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and
levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best
performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the
nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate
data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from
standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest
ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as
base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression
with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively.
However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned
Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.
& 2016 Society of CAD/CAM Engineers. Publishing Servies by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

There are two basic technologies for manufacturing internal
threads: form tapping (using roll/form taps) and cut tapping
(using cut taps). The first process is chipless because the thread is
formed by a cold-working process. Hence, stronger threads,
particularly in materials susceptible to strain hardening, good
thread calibration and a longer tool life are achieved. Form
tapping is studied in the present work, applied in this case to a
cold-forged piece, in which the holes were punched in a cold-
forging process. In the case of form tapping, the thread is formed
by deformation of the raw material in a cold-working process [1].

This process causes an imperfection at a minor diameter of the
formed threads (thread peaks) referred to as a claw or a split crest,
although these imperfections imply no reduction in strength [2,3].
Claw shapes depend on the hole diameter before threading [4].
Form tapping can be performed on ductile steels, non-ferrous
alloys [5] and tempered steels [6].
Stéphan et al. [7] maintained an acceptable forming torque and

deep enough threads to avoid stripping problems by optimization of
the initial hole diameter. Fromentin et al. [8] studied the 3D plastic
flow in form tapping, measuring material displacement and Stéphan
et al. [9] developed a 3D finite element model for form tapping
with the ABAQUS 6.5 software program.
The prediction of tap wear involves three degradation

phenomena: adhesive, abrasive and erosive wear. Adhesive
wear is caused by the transfer of material from one surface to
the other. Abrasive wear is caused by material removal from a
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solid surface, due to the sliding effect of hard particles or
roughness peaks against the other contact surface. Finally,
erosive wear is material loss from a solid surface, due to the
action of a fluid containing solid particles.

Simulations were focused on external thread manufacturing by
deformation [10]. Domblesky [11] worked on the simulation of
thread rolling with good accuracy and then on the optimization of
process parameters [12]. The most direct approach involves a
macroscopic description of worn surfaces and empirical modeling
of the wear based on the process parameters [13].

Data-mining represents a collection of computational tech-
niques, which analyze very complex phenomena. The most
common data-mining techniques applied to manufacturing
problems include Artificial Neural Networks (ANNs), Support
Vector Machines (SVMs), k-Nearest Neighbors Regressors,
and Regression Trees. A combination of two or more models,
known as an ensemble, sums the predictions capabilities of the
combined models. Ensembles have demonstrated their super-
iority over single models in many applications. For
instance, Yü [14] used ensembles to identify out-of-control
signals in multivariate processes. Liao et al. [15] and Bustillo
and Rodriguez [16] used ensembles for grinding wheel and
multitooth tool condition monitoring, respectively, while Cho
[17] and Bisaeid [18] used ensembles for end-milling condi-
tion monitoring and simultaneous detection of transient and
gradual abnormalities in end milling. Ensembles have the
advantage of circumventing the fine tuning of other artificial
intelligence models such as ANNs [19]. The most common
types of ensemble techniques are Bagging, Boosting and
Random Subspaces. Finally, a recent ensemble technique,
Rotation Forest [20], has demonstrated a capability to model
different industrial problems [21]. All these techniques will be
presented in detail in Section 3. To the best of the authors'
knowledge, there are no other investigations that have modeled
form tapping process outputs with data-mining techniques.
One novel robust approach for root-cause identification in
machining process using a hybrid learning algorithm and
engineering-driven rules was developed by Shichang et al.
[22]. In contrast, Mazahery [23] proposed the use of ANN for
tribological behavior modeling of composites, adjusting the
weights and biases in the network during the training stage to
minimize modeling error. In relation to aluminum

nanocomposite processing, Mazahery [24] proposed the use
of genetic algorithms to predict the mechanical properties and
to optimize the process conditions and Shabani [25] used
adaptive neuro-fuzzy inference systems combined with the
particle swarm optimization method for process optimization.
The novelty of this paper resides in its combination of an

experimental analysis and a data-mining model to extract as
much information as possible on tool wear in form tapping
processes, an industrial process in high demand. The Multi-
layer Perceptron, the most widely used standard artificial
intelligence technique mentioned in the literature, was used
to identify the baseline improvements of this new approach
[19]. This paper is structured as follows: at the end of this
introduction, Section 2 presents the fundamentals of form
tapping and the experimental set-up realized to obtain real data
for this industrial process; Section 3 introduces the data-mining
techniques that will be used to model these industrial data;
Section 4 presents and discusses the experimental results of the
measurements and of the modeling using the data-mining
techniques; finally, Section 5 sums up the main conclusions
obtained from this research and future lines of work.

2. Form tapping fundamentals and experimental
procedure

2.1. Form tapping

Tap geometry is the most important parameter for a reliable
process. The standard tap characteristics are chamfer length,
the number of pitches in the chamfer, tap diameter and the
number of lobes around a tap section. Fig. 1 shows the
geometry and features of a typical forming tap. All pictures
showing taps are oriented with the tap tip to the left. As shown
in Fig. 1, each rounded corner of a tap section is referred to as
a lobe, where deformation or friction occurs against the inner
surface of the previous hole. Hence, the tap section is defined
by a curved side polygon that may typically have three, five, or
six corners, which are referred to as lobes.
Three type of lobes are distinguished in each tap: i)

incremental forming lobes situated in the chamfer area; ii)
calibration forming lobes around the nominal diameter; and,
finally, iii) guiding lobes leading up to the tap shank. The

Fig. 1. Terminology and geometry of roll taps [13].
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