
Fluid Genetic Algorithm (FGA)q

Ruholla Jafari-Marandi ⇑, Brian K. Smith
Department of Industrial and Systems Engineering, Mississippi State University, 260 McCain Engineering Building, Mississippi State, MS 39762, United States

a r t i c l e i n f o

Article history:
Received 21 April 2016
Accepted 8 March 2017
Available online 9 March 2017

Keywords:
Genetic Algorithm (GA)
Metaheuristics
Non-exact optimization

a b s t r a c t

Genetic Algorithm (GA) has been one of the most popular methods for many challenging optimization
problems when exact approaches are too computationally expensive. A review of the literature shows
extensive research attempting to adapt and develop the standard GA. Nevertheless, the essence of GA
which consists of concepts such as chromosomes, individuals, crossover, mutation, and others rarely
has been the focus of recent researchers. In this paper method, Fluid Genetic Algorithm (FGA), some of
these concepts are changed, removed, and furthermore, new concepts are introduced. The performance
of GA and FGA are compared through seven benchmark functions. FGA not only shows a better success
rate and better convergence control, but it can be applied to a wider range of problems including multi-
objective and multi-level problems. Also, the application of FGA for a real engineering problem, Quadric
Assignment Problem (AQP), is shown and experienced.
� 2017 Society for Computational Design and Engineering. Publishing Services by Elsevier. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Genetic Algorithm (GA) is a very powerful meta-heuristic and
evolutionary algorithm which has been used (Azadeh et al.,
2013; Oujebbour, Habbal, Ellaia, & Zhao, 2014; Qu, Liu, Duan, &
Yang, 2016), developed (Tavakkoli-Moghaddam & Jafari-Marandi,
2013), adapted (Jafari-Marandi, Hu, & Chowdhury, 2015; Jafari-
Marandi, Hu, & Omitaomu, 2016; Keramatia et al., 2014), and
hybridized with other evolutionary algorithms (Rabbani,
Baghersad, & Jafari, 2013) for many different problems in different
disciplines. The algorithm was proposed by John Holland and his
colleagues in the 1960s. Of course, there are different variations
to the algorithm. Srinivas and Patnaik (1994) carried out the latest
literature survey on the algorithm revealing different efforts in try-
ing to improve the algorithm and mitigate its drawbacks. Not long
after, the research on this algorithm, similar to any other evolu-
tionary algorithms (Van Veldhuizen & Lamont, 2000), took a turn
toward multi-objective optimization (Deb, 1999). Since then there
have been great developments in the path of adapting GA for multi
objective and multi-level problems. In fact, NSGA-II (Deb, Pratap,
Agarwal, & Meyarivan, 2002), a very powerful tool to tackle
multi-objective problems, still remains among these great
developments.

1.1. Literature review

Metaheuristics are solution procedures that use higher level
strategies to enhance existing local improvement strategies with
the hope of escaping from local optima and reaching a robust
search of a solution space (Glover & Kochenberger, 2006). Their
inception goes back to the early 1980s (Osman & Kelly, 1996)
and ever since they have been among the most applied and under
development areas of engineering and science (Talbi, 2009).
Genetic Algorithm and genetic programming remain among highly
applied solution methods. GA’s well-known advantages are robust-
ness and usability (Salomon, 1996). Research on Genetic Algo-
rithms has taken three different directions. First, because of its
great adaptability, researchers have adapted GA to solve different
problems in different disciplines. Second, GA is a very popular can-
didate for being hybridized with other techniques for more
improvements. Lastly, due to the importance of using a fine tuned
GA to solve problems, behavioral parameters of GA are the focus of
researchers’ scrutiny.

The contributions of Genetic Algorithm in many areas of science
and engineering is undisputable. Solving complex mathematical
modeling and optimization problems are among these popular
uses. Kakandikar and Nandedkar (2016) adopt GA to solve their
complex thinning optimization problem and through experience
they show that their genetic coding was successful in dealing with
the challenge. Furthermore, Zhang and Zhao (2015) apply a classic
GA to approach a special point-to-point transfer time traveling
schedule problem. In Azadeh et al. (2013) GA is used to nearly opti-
mally predictmissing values in a randomized block design table. GA

http://dx.doi.org/10.1016/j.jcde.2017.03.001
2288-4300/� 2017 Society for Computational Design and Engineering. Publishing Services by Elsevier.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

q Peer review under responsibility of Society for Computational Design and
Engineering.
⇑ Corresponding author.

E-mail address: Rj746@msstate.edu (R. Jafari-Marandi).

Journal of Computational Design and Engineering 4 (2017) 158–167

Contents lists available at ScienceDirect

Journal of Computational Design and Engineering

journal homepage: www.elsevier .com/locate / jcde

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jcde.2017.03.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Rj746@msstate.edu
http://dx.doi.org/10.1016/j.jcde.2017.03.001
http://www.sciencedirect.com/science/journal/22884300
http://www.elsevier.com/locate/jcde


even is employed in data analytic tasks such as clustering (Maulik &
Bandyopadhyay, 2000), classification (Uysal & Gunal, 2014) and
association rules (Minaei-Bidgoli, Barmaki, & Nasiri, 2013). Addi-
tionally, GA’s adaptability makes it very popular for solving multi-
objective or multi-level (distributed decision making) problems.
NSGA-II (Deb et al., 2002), doubtless is among the strongest tech-
niques to approach a multi-objective optimization problem. In fact,
Konak, Coit, and Smith (2006) put forward a very popular tutorial
on how to use GA for multi-objective optimizations. For example,
multi-objective GA (NSGA-II) is used to solve the challenging time
and space assembly line under uncertain demand (Chica, Bautista,
Cordón, & Damas, 2016). GA is routinely used for multi-level prob-
lems. Jafari-Marandi et al. (2016) adapt GA for solving distributed
decision making of building clusters. Moreover, Long (2016), in
the area of supply chain management, tweaks GA to approach a
multi-level collaborative decision making problem.

In the meta-heuristic research community there is a strong
surge toward introducing new techniques and methods with the
hope of defeating the existing ones. For instance, very recently,
Lion Optimization Algorithm (LOA) Yazdani & Jolai, 2016, based
on the group dynamic behavior of lions such as prey capturing,
mating, and territorial marking, was developed. The efforts of
scholars in improving the techniques are in many cases attracted
toward hybridizing existing techniques, and GA is among the very
popular methods that researchers choose to use for synthesizing.
For instance, the mixture of GA and Particle Swarm Optimization
(PSO) has led to many contributions. Settles and Soule (2005) pro-
pose a general metaheuristic with the combination of both.
Rabbani et al. (2013) hybridize Genetic Algorithm with Particle
Swarm Optimization (PSO) to tackle the convoluted Inventory
Routing Problem (IRP). The same hybridization helped Younes
and Benhamida (2011) deal with the Economic Load Dispatch
(ELD) problem. Genetic Algorithm has also been hybridized with
Tabu Search (Glover, Kelly, & Laguna, 1995), Simulated Annealing
(Yu, Fang, Yao, & Yuan, 2000), and even Neural networks (Yang,
Wu, Jin, & Xu, 2016).

One other important aspect of Genetic Algorithm research
focuses on finding the best values for the behavioral parameters.
The performance of GA is very dependent on its parameters such
as population size, crossover, and mutation rates. In the literature
there are two sides to this matter. First, some works purely study
GA to understand its behavior with different parameters for differ-
ent problems (Gibbs, Maier, & Dandy, 2015). Also, there are studies
that fine tune a proposed algorithm for their own problem, and
Tagochi is famously used for that purpose (Ho, Tsai, Lin, & Chou,
2009; Tsai, Liu, & Chou, 2004).

1.2. Contributions

Despite the existence of several great advances making the
algorithm better suited for different types of problems, such as
multi-objective, distributed decision making problems, leveraging
GA’s dexterity to approach different problems, rarely has there
been any study focusing on improving GA’s essence itself. This
paper, motivated by an effort to bring Genetic Algorithm closer
to its biological foundations, is altering some of its existing parts
and adding new features and concepts to enhance its capabilities.
Through experimenting, the study shows that Fluid Genetic Algo-
rithm is faster, more accurate, more reliable and more adaptable
than the standard GA.

1.3. Paper preface

The remainder of the paper is organized as follows: Section 2
will introduce the classic GA and prepare the reader for Section 3
which presents Fluid GA and the difference that exists between

the two. Following the scientific conventions, the last three sec-
tions are experiments and results, discussions, and conclusion
and future research.

2. Genetic algorithm

Genetic Algorithm, similar to many other meta-heuristics, is an
evolutionary population based algorithm. That is to say, a popula-
tion of answers will evolve through the course of the optimization
to move toward the optimality of a problem. Answers or individu-
als in GA are presented in chromosomes, which, incidentally, are
the very strong suit of the algorithm. A chromosome is in fact an
answer to the problem which is encoded to form a chromosome.
The most prevalently applied chromosome is the binary chromo-
some. Each GA, consequently, needs to have a decoding function
with the purpose of converting chromosome encoding to answers.

Fig. 1 presents a general flowchart of the algorithm. GA will ini-
tialize by randomly producing chromosomes as many as the num-
ber of populations. In the case of binary chromosome, the cells of
the chromosome will be filled with 0 or 1 by the same chance. Each
and every chromosome will be decoded to an answer and conse-
quently, their fitness value will be calculated. Fitness value, by def-
inition, is the goodness of the answer according to the problem.
Next, the population will be sorted based on the individuals’ fitness
value. Crossover and mutation are the two very important opera-
tors of the algorithm. In both, a selection function plays an essen-
tial role. Basically, the operators will change entering
chromosomes with the hope of improving them, but choosing
which chromosome to undergo the operations is by the selection
function. The function that is used for this purpose time and again
is the roulette wheel function. This function operates in a way such
that each and every member of the population has a chance to be
selected, but the better the fitness value of a chromosome the more
selection chance it will have.

Crossover is a bi-chromosomal operator in the sense that it will
work on two chromosomes to output other(s). Two entering chro-
mosomes will mix and produce one or two new chromosome(s)
which are known by their offspring. In the case of the binary chro-
mosome, one-cut crossover is most used. In one-cut crossover,
both chromosomes will be broken from the same cell number
and their parts will swap between the two, resulting in two differ-
ent chromosomes that have characteristics of both entering chro-
mosomes. Crossover is famous for being GA’s optimality derive,
swaying the population toward best answers.

Mutation, unlike crossover, is not bi-chromosomal and does not
serve the purpose of moving the population toward optimality. Its
contribution to the algorithm is to keep it from local optima by
radically changing the entering chromosomes. The single entering
chromosome is changed by the operator harshly, without any rea-
son, and randomly. Last word about mutation is the extent that
operator will change the entering chromosome. Mutation rate is
the term for this behavioral factor of the algorithm.

The pivotal step in the algorithm and certainly in the flowchart is
deciding when to stop the evolution and be satisfied with the best
answer in hand. There is no way GA can be sure of the optimal solu-
tion unless an optima is known to it in advance so there is a need for
stopping strategies. In fact, there are different stoppage criteria.
They can be as simple as a specific numbers of iterations or more
involved by bringing the scaled improvements into equation.

3. Fluid Genetic Algorithm (FGA)

3.1. FGA and GA distinction

Fluid Genetic Algorithm (FGA) is in fact a Genetic Algorithm
with some fundamental differences. These differences are

R. Jafari-Marandi, B.K. Smith / Journal of Computational Design and Engineering 4 (2017) 158–167 159



Download English Version:

https://daneshyari.com/en/article/4952989

Download Persian Version:

https://daneshyari.com/article/4952989

Daneshyari.com

https://daneshyari.com/en/article/4952989
https://daneshyari.com/article/4952989
https://daneshyari.com

