
Applied Soft Computing 26 (2015) 515–522

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Training and testing a self-adaptive multi-operator evolutionary
algorithm for constrained optimization

Saber M. Elsayed ∗, Ruhul A. Sarker, Daryl L. Essam
School of Engineering and Information Technology, University of New South Wales at Canberra, Australia

a r t i c l e i n f o

Article history:
Received 5 September 2012
Accepted 12 October 2014
Available online 24 October 2014

Keywords:
Constrained optimization
Genetic algorithm
Cross validation

a b s t r a c t

Over the last two decades, many different evolutionary algorithms (EAs) have been introduced for solving
constrained optimization problems (COPs). Due to the variability of the characteristics in different COPs,
no single algorithm performs consistently over a range of practical problems. To design and refine an algo-
rithm, numerous trial-and-error runs are often performed in order to choose a suitable search operator
and the parameters. However, even by trial-and-error, one may not find an appropriate search operator
and parameters. In this paper, we have applied the concept of training and testing with a self-adaptive
multi-operator based evolutionary algorithm to find suitable parameters. The training and testing sets
are decided based on the mathematical properties of 60 problems from two well-known specialized
benchmark test sets. The experimental results provide interesting insights and a new way of choosing
parameters.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Constrained optimization is a challenging research area in the
computer science, and optimization domains. In order to solve the
complex decision problems, many problems are defined as con-
strained optimization problems (COPs). COPs can be divided into
many different categories based on their characteristics and math-
ematical properties.

Evolutionary algorithms (EAs) have a long history of success-
fully solving optimization problems regardless of whether or not
they have nice mathematical properties. The EAs family contains a
wide range of algorithms that have been used to solve optimiza-
tion problems, such as the genetic algorithm (GA) [1,2], differential
evolution (DE) [3], evolution Strategies (ES) [4], evolutionary pro-
gramming (EP) [5]. A comparative study among some of these EAs
is found in [6]. In this research, we consider DE for solving optimiza-
tion problems, because DE usually converges quickly, incorporates
a relatively simple and self-adapting mutation, and the same set-
tings can be used for many different problems [3]. EA has the ability
to deal with both continuous and discrete variables, and can deal
with extremely complex fitness landscapes, including under noisy
and dynamic environments.

∗ Corresponding author. Tel.: +61 2 626 88817.
E-mail addresses: s.elsayed@adfa.edu.au (S.M. Elsayed), r.sarker@adfa.edu.au

(R.A. Sarker), d.essam@adfa.edu.au (D.L. Essam).

Due to the variability of problem characteristics, and their
underlying mathematical properties, an algorithm that demon-
strated to work well for one problem, or a class of problems, does
not guarantee that it will work for another problem or a range of
problems. This behavior can be argued as consistent with the no
free lunch (NFL) theorem [7]. For this reason, new algorithms are
continuously reported in the literature for solving new problems
with different characteristics. In developing any new evolution-
ary algorithm, it is required to decide on two main aspects: (i)
designing an appropriate algorithm and (ii) choosing the required
algorithmic parameters. In reality, the algorithm design is not a
single step process, but rather an iterative process. After the ini-
tial design, the algorithm is redesigned and refined until it meets
some criterion. In most cases, the criterion is set as the quality of
the solutions for a given set of test problems. Once the criterion is
met, only the final form of the algorithm is reported. The param-
eters to be used in the algorithm are usually determined through
learning from the test problems. Traditionally, numerous trial-and-
error runs are usually performed to choose suitable parameters.
However, even by trial-and-error, one may not find appropriate
parameters. Such a parameter selection process is sometimes called
parametric analysis. We can now argue that an algorithm with the
chosen parameters may demonstrate adequate solution quality on
the test problems that may not perform well with unknown prob-
lems. However, in evolutionary optimization domain, the usual
practice is to compare the performance of any new algorithm with
the existing algorithm(s) through solving a set of benchmark prob-
lems.

http://dx.doi.org/10.1016/j.asoc.2014.10.011
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.10.011
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.10.011&domain=pdf
mailto:s.elsayed@adfa.edu.au
mailto:r.sarker@adfa.edu.au
mailto:d.essam@adfa.edu.au
dx.doi.org/10.1016/j.asoc.2014.10.011

516 S.M. Elsayed et al. / Applied Soft Computing 26 (2015) 515–522

From the above discussions, we can state that there is no sin-
gle algorithm or an algorithm with a known search operator and
given parameters, that will consistently perform best for all classes
of optimization problems. This motivates us to consider multiple
search operators for a better coverage of problems and a train-and-
test based approach for appropriate parameter selection.

Murata and Ishibuchi [8] examined the performance of differ-
ent variants of GA with two types of genetic operators (each variant
with one crossover and one mutation) in solving flow shop schedul-
ing problems. As they have shown, an independently evaluated
good operator may not perform well when it is used in conjunc-
tion with another operator (here a given crossover with a given
mutation). They also revealed that the combined effect of two
operators, which determines the effectiveness of the algorithm,
could be either positive or negative. This means that the choice of
operators is important in designing a high performing GA, further,
this choice is often made by trial-and-error. In this research, our
focus is on multi-operator based evolutionary algorithms, where
multiple operators, of differing types, will be considered together
within the framework of one algorithm. This type of algorithm
can be seen not only as a better alternative over trial-and-error
based designs, but also as a means to generate better coverage of
problems. Multi-operator based evolutionary algorithms are not
new in the literature. However, their actual ability for solving con-
strained optimization problems has not been fully explored. Also,
the choice of operators and their appropriate mix, and strategies
for their effective use, has not been well studied. A brief review of
multi-operator based EAs is provided below.

In the case of multiple operators based EAs, it is a popular prac-
tice to use adaptive approach. For example, multi-operator based
EAs are not new in the literature. In multiple operators based EAs, it
is a popular practice to use an adaptive approach. Spears [9] applied
an adaptive strategy using two different crossovers for solving N-
Peak problems. Eiben [10] developed an adaptive GA framework
with multiple crossover operators for solving unconstrained prob-
lems. In their algorithm, the population was divided into a number
of sub-populations, each of which used a particular crossover. Based
on the success of the crossovers, the sub-population sizes were var-
ied. However, their adaptive GAs did not outperform the standard
GA using only the best crossover. Hyun-Sook and Byung-Ro [11]
investigated whether a combination of crossover operators could
outperform the usage of only the best crossover operator by solv-
ing the TSP and the graph bisection problem. They used an adaptive
strategy to assign the probability of using different crossovers.

In DE, Mallipeddi et al. [12] proposed an ensemble of muta-
tion strategies and control parameters with DE (EPSDE), in which
a pool of distinct mutation strategies, along with a pool of values
for each control parameter, coexisted throughout the evolution-
ary process and competed to produce offspring. This algorithm
was used to solve a set of unconstrained problems. Mallipeddi and
Suganthan [13] proposed using a mix of four constraint handling
techniques (CHTs) based on a DE algorithm (ECHT-DE) to solve COPs
in which different populations were initialized and such that one of
each CHT was assigned to each population. Furthermore, mixes of
mutation strategies and amplification factor (F) and crossover rate
(Cr) values were also used, along with the two mutation strategies
“DE/rand/2/bin” and “DE/current-to-rand/1/bin”. The pools of Cr
and F values were in the ranges of 0.1–0.9 and 0.4–0.9, respectively,
and in steps of 0.1. This algorithm came second in the CEC2010
competition for COPs. However, it was expensive in terms of com-
putational time. Mallipeddi and Suganthan [14] extended their
previous work to solve a set of real-world applications [15]. How-
ever, their obtained results were not very good in comparison with
those from other algorithms. Tasgetiren et al. [16] proposed a dis-
crete DE algorithm with a mix of parameter values and crossover
operators, in which parallel populations were initialized, to solve

the TSP. Each parameter set and crossover operator was assigned to
one of the parallel populations. Furthermore, each parallel parent
population competed with the same population’s offspring, as well
as the offspring populations generated by all of the other parallel
populations. Although this algorithm showed better results than
other state-of-the-art-algorithms, it was computationally at least
twice as expensive as those against which it was compared in the
paper. Yong et al. have recently proposed a composite DE algorithm
(CoDE) [17], in which the algorithm randomly combines several
trial vector generation strategies with a number of control param-
eter settings at each generation to create new trial vectors. CoDE
has been tested on a set of unconstrained problems and showed
competitive performance in comparison to other state-of-the-art
algorithms. Mallipeddi et al. [18] proposed an EP algorithm that
used different mutation strategies, in which each mutation oper-
ator has its associated population and every population benefits
from every function call. The algorithm has shown superior perfor-
mance in comparison to other EP algorithms. Elsayed et al. [19]
proposed a mix of four different DE mutation strategies within
a single algorithm framework to solve COPs, and that algorithm
showed good performance by solving a set of small scale theoreti-
cal benchmark constrained problems. The algorithm was further
extended in [20,21]. Elsayed et al. [22] proposed two novel DE
variants, in which each variant utilized the strengths of multiple
mutation and crossover operators for solving 60 constrained prob-
lems. The algorithm showed competitive, if not better, performance
in comparison to the state-of-the-art algorithms.

We consider a self-adaptive multi-operator genetic algorithm
(SAMO-GA) for the constrained optimization problem, which
is much more complex than its unconstrained counterpart. In
SAMO-GA, each combination of search operators has its own sub-
population. Further, the subpopulation sizes vary adaptively, as
the evolution progresses, depending on the reproductive success
of the search operators. However, the sum of the size of all of the
subpopulations is fixed during the entire evolutionary process. To
do this, three equations have been introduced for determining the
reproductive success based on the fitness values and the constraint
violations. Lastly, to deal effectively an operator may perform very
well at earlier stages of the evolution process and do badly at later
stages or vice versa, a lower bound on the size of each subpopulation
has been set.

Therefore, the aim of this research is to measure the perfor-
mance of SAMO-GA on a diverse set of constrained problems, in
which we extend the idea of training and testing with EAs for
solving COPs, in which we use a set of test problems that contain
different properties for their objective functions and constraints
[23,24]. Cross-validation [25] is then used to estimate the gener-
alization ability of SAMO-GA. This is done, in such way that the
problems are divided into three groups, with the consideration that
each group contains the most diverse types of problems, as possi-
ble. Each two groups are then used for training, while the third one
is used for testing. Finally, the mean square error measure [26] is
used to quantify the difference between the obtained results and
the best known results.

We could not find any research dealing with the training and
testing concept with evolutionary algorithms for the purpose of
solving constrained optimization. One of the challenging issues
for this concept, is how can we design the training and testing
problems? As it is known in machine learning domain, the idea
of separating the data into training and testing sets comes with a
number of assumptions, such as both training and testing datasets
come from the same distribution. In this paper, we have divided
the test problems, from two well-known problem sets, into three
groups based on their mathematical properties.

This paper is organized as follows. After the introduction,
Section 2 describes the design of SAMO-GA, and the constraint

Download English Version:

https://daneshyari.com/en/article/495308

Download Persian Version:

https://daneshyari.com/article/495308

Daneshyari.com

https://daneshyari.com/en/article/495308
https://daneshyari.com/article/495308
https://daneshyari.com

