Accepted Manuscript

Title: A water-assisted nucleophilic mechanism utilized by BphD, the *meta*-cleavage product hydrolase in biphenyl degradation

Authors: Lihua Dong, Shujun Zhang, Yongjun Liu

PII: S1093-3263(17)30308-X

DOI: http://dx.doi.org/doi:10.1016/j.jmgm.2017.07.016

Reference: JMG 6975

To appear in: Journal of Molecular Graphics and Modelling

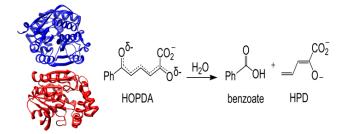
Received date: 26-4-2017 Revised date: 14-7-2017 Accepted date: 17-7-2017

Please cite this article as: Lihua Dong, Shujun Zhang, Yongjun Liu, A water-assisted nucleophilic mechanism utilized by BphD, the meta-cleavage product hydrolase in biphenyl degradation, Journal of Molecular Graphics and Modellinghttp://dx.doi.org/10.1016/j.jmgm.2017.07.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A water-assisted nucleophilic mechanism utilized by BphD, the meta-cleavage product hydrolase in biphenyl degradation


Lihua Dong^{a,b} Shujun Zhang^a Yongjun Liu ^{a*}

^a School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China

^b School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, China

Corresponding to: Tel.: +86 531 883 655 76; fax: +86 531 885 644 64. Email address: yongjunliu_1@sdu.edu.cn(Y. Liu).

Graphical abstract

Highlights:

- The catalytic mechanism of BphD has been elucidated by using QM/MM calculations.
- The hydrolysis of C-C bond contains two half-reactions: acylation and deacylation.
- An active site water molecule is suggested to play important roles for the deprotonation of Ser112.
- The mechanism of BphD may highlight the versatility of Ser-His-Asp triad.

Abstract: As members of the α/β -hydrolase superfamily, *Meta*-cleavage product (MCP) hydrolases generally utilize a Ser-His-Asp catalytic triad to hydrolyze the cleavage of C-C bond during the aerobic catabolism of aromatic compounds by bacteria. BphD is one kind of MCP hydrolase that catalyzes the hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to 2-hydroxypenta-2,4-dienoic acid (HPD) and benzoate. In this article, a combined quantum mechanics and molecule mechanics (QM/MM) approach has been employed to explore the reaction mechanism of BphD from *Burkholderia*

Download English Version:

https://daneshyari.com/en/article/4953269

Download Persian Version:

https://daneshyari.com/article/4953269

<u>Daneshyari.com</u>