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a b s t r a c t 

We present a continuous model for structural brain connectivity based on the Poisson point process. The 

model treats each streamline curve in a tractography as an observed event in connectome space, here 

the product space of the gray matter/white matter interfaces. We approximate the model parameter via 

kernel density estimation. To deal with the heavy computational burden, we develop a fast parameter 

estimation method by pre-computing associated Legendre products of the data, leveraging properties of 

the spherical heat kernel. We show how our approach can be used to assess the quality of cortical par- 

cellations with respect to connectivity. We further present empirical results that suggest that “discrete”

connectomes derived from our model have substantially higher test-retest reliability compared to stan- 

dard methods. In this, the expanded form of this paper for journal publication, we also explore parcella- 

tion free analysis techniques that avoid the use of explicit partitions of the cortical surface altogether. We 

provide an analysis of sex effects on our proposed continuous representation, demonstrating the utility 

of this approach. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

In recent years the study of structural and functional brain con- 

nectivity has expanded rapidly. Following the rise of diffusion and 

functional MRI, connectomics has unlocked a wealth of knowledge 

to be explored. Almost synonymous with the connectome is the 

network-theory based representation of the brain ( Sporns et al., 

20 0 0 ). In much of the recent literature the quantitative analysis 

of connectomes has focused on region-to-region connectivity. This 

paradigm equates physical brain regions with nodes in a graph, 

and uses observed structural measurements or functional correla- 

tions as a proxy for edge strengths between nodes. 

Critical to this representation of connectivity is the delineation 

of brain regions, the parcellation. Multiple studies have shown that 

the choice of parcellation influences the graph statistics of both 

structural and functional networks ( Van Wijk et al., 2010; Zalesky 

et al., 2010; Satterthwaite and Davatzikos, 2015; Wang et al., 2009 ). 

It remains an open question which of the proposed parcellations 
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is the optimal representation, or even if such a parcellation exists 

( de Reus and Van den Heuvel, 2013 ). 

It is thus useful to construct a more general framework for cor- 

tical connectivity, one in which any particular parcellation of the 

cortex may be expressed and its connectivity matrix derived, and 

one in which the variability of connectivity measures can be mod- 

eled and assessed statistically. It is also important that this frame- 

work allow comparisons between parcellations, and representa- 

tions in this framework must be both analytically and computa- 

tionally tractable. Since several brain parcellations at the macro- 

scopic scale are plausible, a representation of connectivity that is 

independent of parcellation is particularly appealing. 

In this paper, we develop such a general framework for a par- 

cellation independent connectivity representation, building on the 

work of Gutman et al. (2014) . We describe a continuous point pro- 

cess model for the generation of observed tract 1 (streamline) in- 

tersections with the cortical surface, from which we may recover 

a distribution of edge strengths for any pair of cortical regions, as 

1 It is critical to distinguish between white matter fibers (fascicles) and observed 

“tracts.” Here, “tracts” denotes the 3d-curves recovered from Diffusion Weighted 

Imaging via tractography algorithms. 
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measured by the inter-region tract count. Our model is an inten- 

sity function over the product space of the cortical surface with 

itself, assigning to every pair of points on the surface a connec- 

tivity density, opposed to the usual connectivity mass assigned 

in discrete models. We describe an efficient method to estimate 

the parameter of the model, as well as a method to recover the 

region-to-region edge strength. We then demonstrate the estima- 

tion of the model on a test-retest dataset. We provide reproducibil- 

ity estimates for our method and the standard direct count method 

( Jahanshad et al., 2013 ) for comparison. We also compare the rep- 

resentational power of common cortical parcellations with respect 

to a variety of measures. 

In this, the extended journal form of the conference publica- 

tion ( Moyer et al., 2016 ), we explore possible methods for direct 

analysis of the continuous connective object. We present an ex- 

emplar analysis of group differences in continuous summary mea- 

sures (regressing a connectivity measure on sex, with age and ICV 

covariates), showing significant differences in regions also identi- 

fied using parcellation-based representations. We use this analysis 

to demonstrate a practical analysis of the proposed model. 

2. Continuous connectivity model 

The key theoretical component of our work is the use of point 

process theory to describe estimated cortical tract projections. A 

point process is a random process where any realization consists of 

a collection of discrete points on a measurable space. The most ba- 

sic of these processes is the Poisson process, in which events occur 

independently at a specific asymptotic intensity (rate) λ over the 

chosen domain ( Moller and Waagepetersen, 2003 ). λ completely 

characterizes each particular process, and is often defined as a 

non-negative function λ : Domain → R 

+ , which allows the process 

to vary in intensity by location. This is functionally similar to a 

probability density, except that realizations of the Poisson process 

can consist of zero, one, or many points, the points are indepen- 

dent by assumption, and λ need not integrate to one. 

The expected count of any sub-region (subset) of the domain 

is its total intensity, the integral of λ over the sub-region. In this 

paper, our domain is the connectivity space of the cortex, the set 

of all pairs of points on the surface, and the events are estimated 

tract intersections with the cortical surface. 

2.1. Model definition and properties 

Let � be union of two disjoint subspaces each diffeomorphic 

to the 2-sphere representing the white matter boundaries in each 

hemisphere. Further consider the space � × �, which here rep- 

resents all possible endpoint pairs for tracts that reach the white 

matter boundary. We denote the set of observed tract endpoint 

pairs as D . We treat the observation of such tracts as events gen- 

erated by an inhomogeneous (symmetric) Poisson process on � ×
�; in our case, for every event ( x, y ) we have a symmetric event 

( y, x ). 

Assuming that each event is independent of all other events 

except for its symmetric event (i.e., each tract in D is recovered 

independently), we model connectivity as a intensity function λ : 

� × � → R 

+ , such that for any regions E 1 , E 2 ⊂�, the number of 

events is Poisson distributed with parameter 

C(E 1 , E 2 ) = 

∫ ∫ 
E 1 ,E 2 

λ(x, y ) d xd y. (1) 

Due to properties of the Poisson distribution, the expected number 

of tracts is exactly C(E 1 , E 2 ) . For any collection of regions { E i } N i =1 
= 

P, we can compute a weighted graph G(P, λ) by computing each 

C(E i , E j ) for pairs ( E i , E j ) ∈ P × P . Each node in this graph is an el- 

ement of P (a subset of �, a region of the cortical surface), and the 

edges between them are the rate at which we observe streamlines 

between the regions. 

We call P a parcellation of � if 
⋃ 

i E i = � and 

⋂ 

i E i has measure 

zero ({ E i } is almost disjoint). If P is a parcellation, then G(P, λ) has 

Poisson rate parameters as edges. For any realization of endpoints, 

the count matrices that form traditional connectomes are indepen- 

dent draws from Poisson distributions with elements of G(P, λ) as 

parameters. The independence of the observations is conditional 

on λ and the fact that P is a parcellation, and does not imply an 

independence of the rates of the different regions—in other words, 

the observed counts are independent given the parameters, but 

this model does not speak to the generation of the parameters 

themselves. 

It is immediately clear that λ is one such parcellation indepen- 

dent representation of connectivity that we desired in Section 1 . λ
is defined without reference to any particular parcellation; more- 

over, for any choice of parcellation P or even more general sets of 

subsets of � (e.g. overlapping sets) we can recover the parameters 

of a random network G(P, λ) . While λ is a representation of cor- 

tical connectivity, we posit that λ itself is not a weighted graph 

as it no longer has a countable set of nodes. However, it does re- 

tain several graph-like constructions, namely a function analogous 

to weighted-degree (“strength”). 

Define the marginal connectivity over a region E ⊂� as M(·; E) : 

� → R 

+ as: 

M(x ; E) = 

∫ 
E 

λ(x, y ) dy. (2) 

This is the aggregate connectivity to any point in region E i from 

any point x –the pointwise intensity of observing a tract incident 

on x for which the other endpoint is contained in E i . Further define 

M(x ) = M(x ;�) = 

∫ 
�

λ(x, y ) dy. (3) 

This is the direct analogue of the sum of the edge weights for a 

given node x , i.e. the weighted degree. It is equal to the point- 

wise rate at which tracts are incident on x , connecting to any other 

point. If λ is continuous, then it can be shown that M ( x ) is also 

continuous. 

2.2. Selection of a parcellation 

G(P, λ) is a summary statistic for the intensity function λ, in 

that it summarizes information about the rate of tract observation 

into a finite set of scalars. It is clearly dependent on the parcel- 

lation P . Thus, given λ and two or more parcellations P 1 , P 2 , . . . , 

we would like to know which parcellation and associated sum- 

mary statistic (graph) G(P, λ) best represents the underlying con- 

nectivity function. This requires a definition of the goodness of a 

representation; in practical terms, this means we need to choose 

a loss function in order to quantify how well G(P, λ) represents 

λ. There are at least two perspectives to consider, one in which 

G(P, λ) is viewed as an approximation to the function λ, and an- 

other in which G(P, λ) is viewed as an approximation to the pa- 

rameter of the point process model. 

L 2 Approximation Error: Because each P i covers � (and P i × P i = 

� × �), each G(P 1 , λ) can be viewed as a piece-wise function g : 

� × � → R 

+ , where g(x, y ) = 

1 
| E i || E j | C(E i , E j ) such that x ∈ E i and 

y ∈ E j . In other words, g is the constant approximation to λ over 

every pair of regions. A natural measure of error is another form 

of Integrated Squared Error: 

Er r (λ, G(P 1 , λ)) = 

∫ ∫ 
�×�

(g(x, y ) − λ(x, y )) 2 d xd y. (4) 

This is analogous to squared loss ( � 2 -loss). 

Please cite this article as: D. Moyer et al., Continuous representations of brain connectivity using spatial point processes, Medical Image 

Analysis (2017), http://dx.doi.org/10.1016/j.media.2017.04.013 

http://dx.doi.org/10.1016/j.media.2017.04.013


Download English Version:

https://daneshyari.com/en/article/4953331

Download Persian Version:

https://daneshyari.com/article/4953331

Daneshyari.com

https://daneshyari.com/en/article/4953331
https://daneshyari.com/article/4953331
https://daneshyari.com

