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a  b  s  t  r  a  c  t

Mechanical  and  physical  properties  of sandstone  are  interesting  scientifically  and  have  great  practical
significance  as  well  as  their  relations  to the mineralogy  and  pore  features.  These relations  are  however
highly  nonlinear  and  cannot  be easily  formulated  by  conventional  methods.  This  paper  investigates  the
potential  of  the  technique  named  as  the  relevance  vector  machine  (RVM)  for prediction  of  the  elastic
compressibility  of sandstone  based  on  its characteristics  of physical  properties.  Based  on  the  fact  that
the  hyper-parameters  may  have  effects  on  the RVM  performance,  an iteration  method  is  proposed  in
this  paper  to search  for optimal  hyper-parameter  value  so  that it can produce  best  predictions.  Also,
the  qualitative  sensitivity  of  the  physical  properties  is  investigated  by the  backward  regression  analysis.
Meanwhile,  the  hyper-parameter  effect  of  the  RVM  approach  is discussed  in  the  prediction  of the  elastic
compressibility  of  sandstone.  The  predicted  results  of the RVM  demonstrate  that  hyper-parameter  values
have evident  effects  on the  RVM performance.  Comparisons  on  the  results  of  the  RVM,  the  artificial  neural
network  and  the  support  vector  machine  prove that  the  proposed  strategy  is  feasible  and  reliable  for
prediction  of the  elastic  compressibility  of  sandstone  based  on its physical  properties.

© 2014  Elsevier  B.V.  All  rights  reserved.

Introduction

The mechanical and physical properties of sandstone are fas-
cinating scientifically and have great practical significance as well
as their relations to its microstructural characteristics [1–4]. These
relations between the mechanical parameters and physical proper-
ties are however highly nonlinear and cannot be easily formulated
by conventional methods. Sandstone is a typical kind of porous
media composed of solid particles and pore spaces. Solid parti-
cles form the skeleton of sandstone and are surrounded by the
pore spaces. The solid particles consist of various kinds of min-
erals, such as the quartz, the feldspar and the detrital clay. Three
types of pores are often measured by the laboratory experiments:
(i) the intergranular pore, (ii) the connective pore and (iii) the micro
pore. The mechanical behaviours of sandstones are closely related
to the physical properties such as the mineral composition and pore
properties. The compositions of solid particles and pores of sand-
stone primarily result in its varying mechanical behaviours. Hence,
mechanical behaviours of sandstones may  be estimated according
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to the characteristics of the mineral compositions and the pore
features.

Elastic compressibility is a common mechanical parameter of
such porous media like the sandstone. Recently, the elastic com-
pressibility of different materials has been studied by various
kinds of techniques [5–8]. The physical properties of sandstone
have been tested in the laboratory to investigate their relationship
with microstructural features and loading pressures [9]. Substantial
experiments have been done to identify the mechanical parame-
ters such as the elastic compressibility. The obtained relationships
between the elastic compressibility and the previous maximum
pressure show that the elastic compressibility at any given pres-
sure is a function of the previous stress history of the sample [10].
However no specific method has been presented to account for
these relations. Thus the estimation of the elastic compressibility
is difficult based on the loading pressures. Substantial discussions
have been made on the compressibility of sandstones including
the stress and the compressibility, the pore structure and the
compressibility and the laboratory measurements of the com-
pressibility [7]. Also, methods are presented with permission of
quantitative predictions of the sandstone compressibility. Some
work on prediction of the rock compressibility behaviours has been
undertaken using the neural networks and support vector machine
based on rock physical properties [11,12]. Some experiments have
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been done to discover the fractal characteristics of the pore struc-
ture of the low permeability sandstone [13]. A pore structure model
is applied to predict the elastic wave velocities in fluid-saturated
sandstones [14]. These results show that pore structures do influ-
ence the characteristics of sandstones. Hence, the effects of the
mineral compositions as well as the microstructure features should
be considered for the estimation of the elastic compressibility.

It is sometimes expensive to measure certain mechanical fea-
tures of porous materials. Recently, the soft computing techniques
including the neural network, the support vector machine [15],
the cloud models [16], and the Gaussian process [17] have been
incorporated into rock mechanics and engineering to discover the
mechanical behaviours of rocks [18–24] as well as the associated
hazards [25–30]. In this study, we focus on the estimation of the
elastic compressibility of sandstone according to its characteristics
of the mineral compositions and the pore structures as well as the
loading pressure using the state-of-art soft computing technique
named as the relevance vector machine (RVM) [31]. The RVM is a
probabilistic approach for learning disciplines in data. The hyper-
parameters influence the modelling performance of RVMs [32]. The
application of the RVM has been presented in the slope reliable
analysis [33]. However, the effect of the hyper parameter has not
been discovered yet and usually given manually.

In this paper, we present an iterative strategy to optimize the
RVM hyper-parameters adaptively and then apply this approach to
estimate the elastic compressibility of sandstones. We  aim to: (1)
show the qualitative sensitivity of the factors to the elastic com-
pressibility of sandstones; (2) show the effects of hyper-parameters
of RVM in the estimation of the elastic compressibility of sand-
stones; (3) investigate the potential capability of the adaptive RVM
in the estimation of the elastic compressibility of sandstone accord-
ing to its characteristics of properties like the mineral composition
and the pore features. The specific mechanical effects of the min-
erals or the pore structure are not included in this study.

Methodology: adaptive relevance vector machine

Relevance vector machine for multivariable estimation

The RVM is proposed in the Bayesian framework with proba-
bilistic significance [31]. It produces a mapping between the target
variables and the associated independent variables, i.e.

y = f (x; w)  =
N∑

i=1

wiK(x, xi) + w0 = wt�(x) (1)

where N is the total sample number; i is the ith sample number;
y = f (x; w)  is the mapping; x, xi denote the associated independent
variables; K(x, xi) is the kernel functions; �(x) = [1, K(x, x1), K(x, x2),
. . .,  K(x, xn)]t; wi is the weight of ith sample, w = [w0, w1, . . .,  wN]t .

In regression, the RVM employs Eq. (1) with an additive noise
term to link the input xn and scalar target variable tn

tn = f (xn; w)  + ∈ n (2)

where ∈n is a zero-mean white noise process with variance �2, that
is p(∈ n|�2) = N(∈ n|0, �2).

Posing  ̌ = �2, and assuming independence of the samples, the
likelihood of the training samples is

p(t|X, w, ˇ) = (2�ˇ−1)
−N/2

exp
(

−1
2

ˇ
∥∥t − �w

∥∥2
)

(3)

where t = [t1, . . .,  tN]t, X = [Xn]N
n=1. With more parameters (N + 1)

than training data samples (N), direct maximum-likelihood esti-
mation of w would lead to over-fitting. In the RVM Bayesian
framework, zero-mean Gaussian shrinkage priors are imposed on

every wi and, assuming the independence of the parameters, one
can have

p(wi|˛i) = N(wi|0, ˛−1
i

) ⇒ p(w|˛) =
N

˘
i=0

N(wi|0, ˛−1
i

) (4)

with  ̨ = [˛0, ˛1, . . .,  ˛N]t, a N + 1 vector of hyper-parameters repre-
senting the precision on the parameters.

Finally uniform hyper-priors are assumed for the precision
hyper-parameters,  ̨ and ˇ. An interesting property of these hyper-
priors is that when the evidence of the model is maximized with
respect to the hyper-parameters the corresponding parameters
turn to be zero. This is a type of “automatic relevance determina-
tion” [34] leading to a sparse set of parameters w. Using Bayes rule
and the properties of Gaussian functions, the posterior distribution
of the weight can also be described by a Gaussian:

p(w|X, t, ˛, ˇ) = N(w|m, ˙)  (5)

where the mean m and the covariance  ̇ are given by

m = ˇ˙˚tt;  ̇ = (A + ˇ˚t˚)
−1

(6)

with A = diag(˛0, . . .,  ˛N) a diagonal matrix of precisions.
In practice, the values of  ̨ and  ̌ are estimated by maximizing

the marginal likelihood p(t|X, ˛, ˇ), i.e., using a type-II maximum-
likelihood method [35]. Only the most probable values are thus
calculated, which is an approximation to estimate their full dis-
tribution. With this simplification, the marginal likelihood can be
obtained by integrating over the weight parameters

p(t|X, ˛, ˇ) =
∫

p(t|X, w, ˇ)p(w|˛)dw = N(t|0, ˇ−1I + ˚A−1˚t)

(7)

Values of  ̨ and  ̌ that maximizes (the log of) Eq. (7) can then be
obtained iteratively using the following updating rules

˛new
i = 1 − ˛i˙ii

m2
i

; (ˇnew)−1 =
∥∥t − ˚m

∥∥2

N −
∑N

i−1(1 − ˛i˙ii)
(8)

where mi is the ith element of the estimated posterior weight w
and ˙ii the ith diagonal element of the posterior covariance matrix

 ̇ from Eq. (6).
Once the iterative procedure has converged to the “most proba-

ble values ˛MP and ˇMP, the distribution of target value t* for a new
data point x* is also Gaussian and estimated by

p(t∗|X, t, ˛MP, ˇMP) =
∫

p(t∗|X, w, ˇMP)p(w|X, t, ˛MP, ˇMP)dw

= N(t∗|mtϕ(x∗), �2∗ )
(9)

�2
∗ = ˇ−1

MP + ϕ(x∗)t˙ϕ(x∗) (10)

where  ̇ is given by Eq. (6) with  ̨ and  ̌ set at their optimal value.

Adaption of hyper-parameters

Unlike the optimization of the weight w, the hyper-parameter
r2 is user-defined before model training. In order to optimize the
hyper-parameter value, the target function (TF) should be defined
first. The adaption of the kernel parameters goes in the following
steps:

(a) Initialize the hyper-parameter r2 in a proper range and specify
the initial r2

0 and an appropriate step for iteration;
(b) Specify one kernel function;
(c) Train the RVM model with the data set to obtain an optimal ˛MP

and the weight w;
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