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a b s t r a c t 

Traditional histology is the gold standard for tissue studies, but it is intrinsically reliant on two- 

dimensional (2D) images. Study of volumetric tissue samples such as whole hearts produces a stack of 

misaligned and distorted 2D images that need to be reconstructed to recover a congruent volume with 

the original sample’s shape. In this paper, we develop a mathematical framework called Transformation 

Diffusion (TD) for stack alignment refinement as a solution to the heat diffusion equation. This general 

framework does not require contour segmentation, is independent of the registration method used, and 

is trivially parallelizable. After the first stack sweep, we also replace registration operations by opera- 

tions in the space of transformations, several orders of magnitude faster and less memory-consuming. 

Implementing TD with operations in the space of transformations produces our Transformation Diffusion 

Reconstruction (TDR) algorithm, applicable to general transformations that are closed under inversion and 

composition. In particular, we provide formulas for translation and affine transformations. We also pro- 

pose an Approximated TDR (ATDR) algorithm that extends the same principles to tensor-product B-spline 

transformations. Using TDR and ATDR, we reconstruct a full mouse heart at pixel size 0.92 μm × 0.92 μm, 

cut 10 μm thick, spaced 20 μm (84G). Our algorithms employ only local information from transforma- 

tions between neighboring slices, but the TD framework allows theoretical analysis of the refinement as 

applying a global Gaussian low-pass filter to the unknown stack misalignments. We also show that re- 

construction without an external reference produces large shape artifacts in a cardiac specimen while 

still optimizing slice-to-slice alignment. To overcome this problem, we use a pre-cutting blockface imag- 

ing process previously developed by our group that takes advantage of Brewster’s angle and a polarizer 

to capture the outline of only the topmost layer of wax in the block containing embedded tissue for 

histological sectioning. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Traditional histology, the study of tissue microarchitecture, orig- 

inated in the 17th c. with first applications of microscopy to 

animal-derived samples by Marcello Malpighi. It has become the 

gold standard for structural description of cells and tissue, serving 

important functions in clinical diagnosis of pathologies. Traditional 

Abbreviations: ATDR, Approximated Transformation Diffusion Reconstruction; 

FTCS, Forward-Time Central-Space; TD, Transformation Diffusion; TDR, Transforma- 

tion Diffusion Reconstruction. 
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histology produces two-dimensional (2D) images, resolving cellular 

and sub-cellular detail in slices that typically are several microme- 

ters thick. A wide variety of chromatic stains, developed since the 

18th c., enable cell labeling (e.g. Masson’s Trichrome or Picro Sirius 

Red dyes label myocytes, collagen and endothelial cells). Although 

most clinical tissue samples are small, typically from biopsies, in- 

terest in imaging whole organs has grown over the last decade, 

in organs such as brain ( Amunts and Zilles, 2015; Annese, 2012 ), 

heart ( Burton et al., 2006; Magee et al., 2015; Mansoori et al., 

2007 ) or lung ( Rusu et al., 2015 ), for instance to inform computa- 

tional models that aim to simulate brain function, cardiac contrac- 

tion or respiration, to guide studies relating structure to function, 
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or to serve as a reference for lower resolution non-invasive imag- 

ing modalities such as Magnetic Resonance Imaging ( Amunts et al., 

2013; Plank et al., 2009; Rusu et al., 2015 ). 

One of the main limitations of traditional histology is the fact 

that the acquired 2D images cannot be directly stacked to recon- 

struct a consistent 3D volume with the original sample shape due 

to a series of tissue transformations. Cardiac tissue, for example, 

swells by > 20% during the first half-hour of ex-vivo saline perfu- 

sion ( Bub et al., 2010 ). Histological processing for wax-embedding 

reduces tissue volume by 48% compared to ex vivo MRI ( Burton 

et al., 2014 ), and produces non-affine deformations. Cutting of 

wax-embedded tissue inherently destroys the rigid alignment be- 

tween 2D slices. In addition, histology stacks tend to contain large 

amounts of data (e.g. a rat heart, sliced at 10 μm, produces roughly 

10 0 0 slices, which, if imaged at a resolution of 0.46 μm × 0.46 μm, 

require ∼1 TB hard drive space ( Burton et al., 2006 )). The process 

of recovering the sample’s original 3D shape, generally referred to 

as 3D histology reconstruction or congruencing , has received a fair 

amount of attention in the field since Wilhelm His’ studies of hu- 

man embryos in 1880, with significant mathematical and comput- 

ing improvements in the last decades. 

Reconstruction of histology sections typically starts with a 

rough rigid pre-alignment, either registering slices to an exter- 

nal reference (histology-reference pre-alignment) or to each other 

within the stack (intra-histology pre-alignment). Pre-alignment 

produces jagged slice-to-slice transitions, so it is followed by finer 

histology registration (intra-histology refinement). Coarseness of 

alignment and refinement is given by the degrees of freedom 

of the transformation used by the registration method, e.g. rigid 

( Ourselin et al., 2001; Rusu et al., 2015 ), affine ( Adler et al., 2014, 

2012; Xu et al., 2015 ), 1D piecewise linear ( Ju et al., 2006 ), elastic 

spring triangular mesh ( Guest and Baldock, 1995; Saalfeld et al., 

2012 ), Discrete Smooth Interpolation ( Machin and Sperber, 1996 ), 

displacement field ( Burton et al., 2006; Gaffling et al., 2015; Man- 

soori et al., 2007; Schmitt et al., 2006; Wirtz et al., 2004 ), curva- 

ture flow ( Cifor et al., 2011, 2009 ), symmetric normalization (SyN) 

diffeomorphism ( Adler et al., 2012 ), diffeomorphic inverse consis- 

tent algorithm ( Yushkevich et al., 2006 ), large deformation dif- 

feomorphic metric mapping (LDDMM) ( Ceritoglu et al., 2010 ), or 

tensor-product B-spline ( Arganda-Carreras et al., 2010; Feuerstein 

et al., 2011; Gaffling et al., 2015; Magee et al., 2015; Müller et 

al., 2014; Roberts et al., 2012; Schubert et al., 2016; Song et al., 

2013 ). 

Algorithms that reconstruct the stack without an external ref- 

erence of the pre-cut sample shape abound in the literature ( Cifor 

et al., 2011; Fónyad et al., 2015; Gaffling et al., 2015; Guest and 

Baldock, 1995; Ju et al., 2006; Müller et al., 2014; Roberts et al., 

2012; Saalfeld et al., 2012; Song et al., 2013; Wirtz et al., 2004; 

Xu et al., 2015 ) and are featured in software applications such as 

Voloom (microDimensions GmbH), BioVis3D, or 3DView (3DHIS- 

TECH Ltd.). Such reference-free approaches have long been known 

to be susceptible to a series of geometric artifacts. These include: 

“the straightening of curvatures (reconstructing a cucumber from a 

banana), false z-axis orientation (setting the tower of Pisa upright), 

or the conversion of asymmetric shapes into symmetric ones (re- 

constructing the bill of a raven into the bill of a woodpecker)”

( Streicher et al., 1997 ). This set of geometric artifacts is informally 

known in the literature as the straight banana problem. In Section 

2.3.1 we formalize this concept as the “maximum alignment” so- 

lution, and discuss its differences with the desired “true shape”

solution. Other reference-free artifacts are wobbly boundaries ( Ju 

et al., 2006 ) and drift or z-shift effect caused by the accumulation 

of correlated registration errors ( Casero et al., 2016; Feuerstein et 

al., 2011; Yushkevich et al., 2006 ) (see example in Section 3.2.1 ). 

Nonetheless, reference-free reconstruction may be of interest if an 

external reference is simply not available, if faithful reconstruc- 

tion of the shape is not crucial, or if maximum alignment coin- 

cides with the true shape, as it is the case for small rectangular 

or cylindrical samples with structures normal to the cutting plane. 

This is not the case for large cardiac samples, though, as preserv- 

ing epicardial and endocardial shapes and complex structures such 

as locally-defined cleavage planes between myocardial layers, vas- 

culature and trabeculae is necessary for computational modeling. 

Therefore, to avoid those artifacts our workflow includes an exter- 

nal reference, although the reconstruction algorithms we propose 

can be used with or without one. 

Examples of external references in the literature are tissue 

markers ( Ourselin et al., 2001; Streicher et al., 20 0 0 ), drill holes 

( Streicher et al., 1997 ), template or atlas ( Ali and Cohen, 1998; He 

et al., 1995; Ju et al., 2006; Timsari et al., 1999 ), structural proba- 

bility map ( Müller et al., 2014 ), MRI ( Adler et al., 2014, 2012; Ceri- 

toglu et al., 2010; Gibb et al., 2012; Gilbert et al., 2012; Malandain 

et al., 2004; Mansoori et al., 2007; Ourselin et al., 2001; Rusu et 

al., 2015; Schormann et al., 1995; Thompson and Toga, 1996 ), CT 

( Atkinson, 2014 ), micro-CT ( Khimchenko et al., 2016 ) or 2D images 

of the tissue surface at the cut side of the embedded tissue, a.k.a. 

blockface images ( Bardinet et al., 2002; Gefen et al., 2003; Kim et 

al., 1997; Mega et al., 1997; Ourselin et al., 2001; Schubert et al., 

2016; Siedlecka et al., 2013a, 2013b; Toga et al., 1994 ). Taking a 

different approach, ( Xu et al., 2015 ) use bisected nuclei in liver 

histology as natural fiducial markers to avoid geometric artifacts 

without an external reference. This requires a sufficiently uniform 

distribution of bisected nuclei, which is not guaranteed for cardiac 

tissue, in particular in areas where myocytes run orthogonal to the 

cutting plane. Also, nuclei visualization limits the number of dyes 

that can be used. Our external reference is a novel type of block- 

face image developed by our group ( Casero et al., 2016; Gruscheski 

et al., 2015; Siedlecka et al., 2013a, 2013b ). Our method takes ad- 

vantage of light polarization when illuminating the wax top sur- 

face at Brewster’s angle to produce a sharp near-binary ‘negative’ 

image of the regions where tissue protrudes. Unlike 3D images ob- 

tained prior to histological processing, such as CT or MRI, block- 

face images are acquired directly at the microtome and do not 

involve an ill-posed 2D → 3D alignment problem caused by differ- 

ent slicing angle between histology and the 3D image, as well as 

3D tissue deformations out of the slice plane, as seen in previ- 

ous work by our group ( Gibb et al., 2012; Mansoori et al., 2007 ). 

Furthermore, the 2D → 2D alignment problem is trivially paralleliz- 

able. In common with the majority of the literature, we only use 

the blockface images to pre-align the histology stack. Alternatively, 

( Adler et al., 2014, 2012; Feuerstein et al., 2011; Mansoori et al., 

2007 ) use the external reference during refinement. In this case, 

the external reference can be seen as a regularization term that 

also introduces registration noise, caused by its lower resolution 

and imaging artifacts, and interferes with the delicate local trans- 

formations necessary to align small structures. Another alternative 

is to first refine the histology stack and then register to an exter- 

nal MRI reference solving a 3D → 3D alignment problem ( Ceritoglu 

et al., 2010; Malandain et al., 2004 ). For the blockface external ref- 

erence, this approach would need to be adapted as a regularized 

2D → 2D alignment to take advantage of the blockface-histology 

slice-by-slice correspondence, and is beyond the scope of this 

work. 

Apart from the type of registration method and the use of an 

external reference, another main feature of reconstruction methods 

is how they sweep the stack of N histology slices I 0 , . . . , I N−1 . The 

prevalent approaches in the literature are sequential algorithms 

that register one slice at a time towards one or more neighbors, 

applying the resulting transformation straight away. Any slice can 

be used as the initial one, but to simplify the notation, let’s assume 

that the sweep starts at I 0 . Algorithms that register each slice I i 
to a unilateral radius- d neighborhood I i −d , . . . , I i −1 need only one 
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