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a b s t r a c t

Brain networks based on resting state connectivity as well as inter-regional anatomical pathways obtained

using diffusion imaging have provided insight into pathology and development. Such work has underscored

the need for methods that can extract sub-networks that can accurately capture the connectivity patterns

of the underlying population while simultaneously describing the variation of sub-networks at the subject

level. We have designed a multi-layer graph clustering method that extracts clusters of nodes, called ‘net-

work hubs’, which display higher levels of connectivity within the cluster than to the rest of the brain. The

method determines an atlas of network hubs that describes the population, as well as weights that character-

ize subject-wise variation in terms of within- and between-hub connectivity. This lowers the dimensionality

of brain networks, thereby providing a representation amenable to statistical analyses. The applicability of

the proposed technique is demonstrated by extracting an atlas of network hubs for a population of typically

developing controls (TDCs) as well as children with autism spectrum disorder (ASD), and using the structural

and functional networks of a population to determine the subject-level variation of these hubs and their

inter-connectivity. These hubs are then used to compare ASD and TDCs. Our method is generalizable to any

population whose connectivity (structural or functional) can be captured via non-negative network graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Computational techniques applied to neuro-imaging data have

shown anomalies in brain activity (Ghanbari et al., 2013) and struc-

tural connectivity (Ingalhalikar et al., 2014; Matthews et al., 2013)

in neuro-developmental disorders such as schizophrenia (Price et

al., 2007; Skudlarski et al., 2010) and autism spectrum disorder (Jou

et al., 2011; Vissers et al., 2012). Structural connectivity relies on dif-

fusion imaging to characterize anatomical connections between brain

regions (Mori and van Zijl, 2002; Friman et al., 2006). It is quanti-

fied using probabilistic (Behrens et al., 2003; Behrens et al., 2003;

Friman et al., 2006) or streamline (Mori and Barker, 1999; Mori et al.,

1999; Mori and van Zijl, 2002) tractography performed on the dif-

fusion imaging data, resulting in non-negative measures indicative

of structural connectivity between brain regions. Functional connec-

tivity based on fMRI, MEG or EEG is investigated at rest or during

tasks by quantifying the similarity of temporal characteristics or co-
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herence of brain activity between brain regions using methods such

as correlation (Martijn and Hilleke, 2010), synchronization likelihood

(Barttfeld et al., 2011; Kim et al., 2013; van Dellen et al., 2013), and co-

herence (Sakkalis, 2011), or phase-amplitude coupling (PAC) (Berman

et al., 2015). Such measures tell us whether there is a structural path-

way or functional communication between the two regions (or with

PAC connectivity in a local region as well as between regions), and

the strength of the connection. While task-related functional connec-

tivity captures brain networks associated with information process-

ing (Sporns et al., 2000), resting state functional connectivity facili-

tates the study of connectivity in the absence of external stimulation,

(Mantini et al., 2007; Assaf et al., 2010).

Autism spectrum disorder (ASD) is a developmental disorder char-

acterized by social and communication impairments, as well as repet-

itive and restricted behaviors (APA, 1994, 2000). Research indicates

that many ASD symptoms are associated with abnormal structural

and functional brain connectivity (Vissers et al., 2012; Edgar et al.,

2015; Ghanbari et al., 2014). Current theories of brain connectivity

in ASD primarily report local over-connectivity in the frontal regions

and long range under-connectivity (Just et al., 2012; Vissers et al.,

2012). For example, MRI structural connectivity studies suggest ASD

is characterized by enhanced short-range and decreased long-range
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connectivity (Courchesne and Pierce, 2005). MRI functional connec-

tivity studies also report abnormalities, with atypical connectivity be-

tween brain regions reported in fMRI studies of ASD, in domains such

as social interaction (Perkins et al., 2010), face processing (Critchley

et al., 2000; Schultz et al., 2000), as well as in other cognitive tasks

(Castelli et al. 2002; Just et al., 2004 , 2007). Electroencephalogra-

phy (EEG) and magnetoencephalography (MEG) have also examined

resting-state activity in ASD, showing that brain connectivity in ASD

does not fit into the small-world network model observed in controls

(Barttfeld et al., 2011), and that in ASD functional connectivity is de-

ficient in long-range fronto-occipital connections and is excessive in

short-range frontal connections (Coben et al., 2008; Barttfeld et al.,

2011). Local occipital-parietal resting-state connectivity abnormali-

ties have also been recently reported (Berman et al., 2015).

Given that many neurodevelopmental disorders are thought to

be disorders of connectivity, the analysis of brain connectivity is of

high importance. Recently, connectivity analysis has focused on rep-

resenting brain connectivity using graphs, where the brain is divided

into regions of interest (ROI), each of which is a node in the graph,

with the edges weighted with the connection strength between two

brain ROIs. Graph representations are, however, of high dimensional-

ity, and thus difficult to analyze and interpret. Graph theory metrics

(Bullmore, 2009; Rubinov and Sporns, 2010) have been recently in-

troduced to analyze the complex organization of brain networks by

providing features such as small-worldness, modularity, centrality,

and participation coefficient (Sporns et al., 2007; Bassett et al., 2011;

Ingalhalikar et al., 2014). Although some of these features have shown

to be associated with pathology (Barttfeld et al., 2011; Rudie et al.,

2012; Griffa et al., 2013), they are difficult to interpret for non-sparse

and highly variable connectivity networks.

Commonalities in these networks over a population, and the

variation at the individual level, underline the need for a network

analysis methodology that can extract sub-networks that are able

to characterize the population network structure while reducing di-

mensionality. Ideally, these sub-networks will describe local brain

processes, with sub-network interactions measuring communication

between sub-networks, thereby characterizing long- and short-range

connectivity patterns. This would provide an interpretable brain net-

work map while also facilitating statistical analyses that describe

how this brain network is affected by disease. Although traditional

approaches such as principal and independent components analysis

(PCA and ICA) (Calhoun et al., 2008) provide dimensionality reduc-

tion, such approaches when applied to functional or structural con-

nectivity networks, in the absence of positivity constraints, produce

components that often lack physiological interpretability. Such pos-

itivity constraints are needed in the case of DTI-based connectivity

matrices, as the connection measures quantify the anatomical con-

nectivity between regions; hence its relationship with anatomy is

the constraining factor for it to be non-negative. In functional con-

nectivity, too, when the connectivity is quantified by a non-negative

measure, like synchronization likelihood, as opposed to correlation,

the components or sub-networks obtained from analysis are inter-

pretable in the same space of connectivity quantification if they are

non-negative.

Recently, hierarchical mixture model was used estimated func-

tional networks in resting state fMRI (Liu et al., 2014). This model

finds networks that account for both within subject coherence and

between-subject consistency of the network label maps, however

does not constrain the networks with non-negativity that is impor-

tant for interpretability in applications such as MEG or DTI.

To overcome this issue, non-negative matrix factorization (NMF)

and its alternatives have recently gained attention and have been

effective in providing an interpretable set of bases characterizing

multivariate data. Since its introduction by Lee and Seung (1999),

NMF has been successfully employed in applications such as signal

processing, pattern recognition, data mining, and medical imaging

Fig. 1. The brain network is hypothesized to be made up of several hubs that are inter-

connected (dashed lines), with each hub composed of a set of highly connected nodes

(solid lines). The collection of hubs is considered as an atlas of connectivity. On the

right, the subject-wise realizations of this network atlas show subject level variation.

(Berry et al., 2007; Yang and Oja, 2010; Batmanghelich et al., 2012;

Ghanbari et al., 2013). Despite the advantages in interpretability that

NMF offers over other dimensionality reduction techniques (PCA, ICA,

etc.), due principally to its part-based representation of data and non-

negativity constraints on both the bases and coefficients, it does pos-

sess drawbacks. Namely, traditional NMF requires that connectivity

matrices be vectorized prior to being used as a feature vector in the

analysis pipeline. This vectorization of the connectivity matrix simply

treats the relationship (i.e. connectivity) between pairs of nodes as in-

dependent and overlooks the inter-dependency between the connec-

tions emanating from that node, thereby losing the graph structure

that such nodes and their inter-connections form.

In this paper, we present a novel approach that extracts the un-

derlying functional/structural sub-networks that describe the hubs of

the brain connectivity network while capturing variation in the popu-

lation. Our framework does not treat the connectivity between pairs

of nodes as being strictly independent, but instead is based on the

premise that there are a few underlying sub-networks that describe

the population, with variations in these networks representative of

variations in the subjects. We have therefore designed a method that

extracts sets of nodes – called hubs – that communicate strongly

within each set, with the collection of hubs characterizing the popu-

lation. As the intra- and inter-connectivity of these hubs plays an im-

portant role in describing brain connectivity, the presented method

determines the dominant network hubs that characterize common-

ality across subjects within a population, with connectivity between

these hubs capturing the individualized variation (e.g., due to inher-

ent heterogeneity or induced by pathology). This collection of net-

work hubs is referred to as a network atlas. Fig. 1-left illustrates

a hub atlas composed of four network hubs that are strongly con-

nected within each hub (shown by thick connections) and with inter-

connectivity between hubs shown by dashed lines.

The manifestation of the network atlas at the subject level can be

highly variable (as illustrated in Fig. 1-right). Hence, the primary aim

of this work is to identify the network hubs of the population, which

define its atlas of connectivity. These hubs will determine the com-

monalities across the population networks, as illustrated in Fig. 2(a).

As shown in Fig. 2(b), given the connectivity network of a subject and

the atlas of hubs, our proposed method will: (a) quantify the contri-

bution of each hub to that subject’s network (illustrated by the size

of each hub on the right side of Fig. 2(b)), and (b) quantify the over-

all interaction (inter-connectivity) between pairs of hubs (illustrated

by the thickness of connections between hubs on the right side of

Fig. 2(b)). These subject-level measures will then be used for statisti-

cal analysis and group comparisons.

The approach we take to extract network hubs is based on

multi-layer graph clustering. The advent of graph-based clustering
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