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a b s t r a c t 

Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and 

risk assessment. This paper highlights new research directions and discusses three main challenges re- 

lated to machine learning in medical imaging: coping with variation in imaging protocols, learning from 

weak labels, and interpretation and evaluation of results. 
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1. Introduction 

Supervised learning techniques, which learn a mapping from in- 

put data to output (labels) from a set of training examples, have 

shown great promise in medical image analysis. Pattern classifica- 

tion has already been used for decades to detect, and later char- 

acterize, abnormalities such as masses in mammograms and nod- 

ules in chest radiographs based on features describing local image 

appearance ( Giger et al., 2008 ). With improvements in computer 

hardware it has become feasible to train more and more complex 

models on more data, and in the last few years, the use of su- 

pervised learning in image segmentation, recognition, and regis- 

tration has accelerated. Trained appearance models are replacing 

simple intensity and gradient models as a component in segmen- 

tation systems, and statistical shape models that describe the typ- 

ical shape and shape variations in a set of training shapes have 

replaced free form deformable models in many cases. Several new 

methods learn to diagnose disease in a fully data driven manner, 

using multivariate classification or regression to directly map from 

imaging data to diagnosis. These techniques are not restricted by 

current knowledge on disease-related radiological patterns and of- 

ten have higher diagnostic accuracy than more traditional quanti- 

tative analysis based on simple volume or density measures. 

Supervised quantification approaches can not only assist in 

diagnosis, but are also increasingly used to predict future dis- 

ease onset or progression. Models are then trained on data from 
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longitudinal studies in which the disease status years after the 

acquisition of the baseline image is known. For example at Eras- 

mus MC, Achterberg et al. (2014) showed that hippocampal shape 

classification in a healthy elderly population is predictive of on- 

set of dementia symptoms up to ten years later. van Engelen et al. 

(2014) used multivariate sparse Cox regression to take time to 

event into account in the model and found that changes in plaque 

texture and volume in ultrasound images of the carotid artery 

could predict future vascular events better than traditional risk fac- 

tors could. 

Possibly the most widespread application of machine learning 

based diagnosis appearing in publications is in neurodegenerative 

diseases, where researchers aim to diagnose Alzheimer’s disease or 

other forms of dementia, or predict conversion from mild cognitive 

impairment (MCI) to dementia, based on brain MR images. This is 

likely driven, at least in part, by the availability of large datasets 

with diagnostic labels, such as the Alzheimer’s Disease Neuroimag- 

ing Initiative (ADNI) and Open Access Series of Imaging Studies 

(OASIS). 

Another example where availability of data has altered the 

course of research is the detection of diabetic retinopathy in reti- 

nal fundus photographs. Many early papers focused on optimiz- 

ing detection and segmentation of retinal vessels, for which sev- 

eral smaller public databases with ground truth were available. 

A recent Kaggle competition on diabetic retinopathy detection 
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changed the field by providing 35,0 0 0 images with expert visual 

1 https://www.kaggle.com/c/diabetic-retinopathy-detection . 
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scores for training. This has drawn attention from data scientists 

around the world with no or little prior experience in medical im- 

age analysis. Many of the 661 participating teams used no spe- 

cific pre-processing or segmentation but still obtained very good 

results. The top performing contributions all used different layouts 

of convolutional networks, with extensive data augmentation to in- 

crease the amount of training data even further, and achieved per- 

formance scores surpassing those previously reported for human 

experts. 

We need to keep in mind that this example is a specific task, 

performed on 2D images. Differential diagnosis or quantification 

based on full 3D or 4D, possibly multi-modal, imaging data would 

require even larger training sets to describe all biological varia- 

tion adequately. Additional domain specific knowledge will there- 

fore still be needed in many cases. Results of another big data chal- 

lenge which have just become available at the time of writing this 

paper, the “2015 Data Science Bowl”2 , seem to point in that direc- 

tion. The challenge was to automatically measure end-systolic and 

end-diastolic volumes from dynamic cardiac MRIs. While the list 

of best performing algorithms is again dominated by convolutional 

neural networks, all top teams also performed specific preprocess- 

ing steps to detect the relevant regions and align image sequences. 

Nonetheless, these two examples suggest that supplying general 

purpose machine learning algorithms with a large amount of train- 

ing data can lead to large improvements over current state-of-the- 

art performance in medical image analysis and computer aided di- 

agnosis. 

An enormous amount of data that could potentially be used 

for training exists: clinical experts assess many thousands of MRI 

and CT scans every day. In OECD countries alone, over 200 million 

CT and MRI scans are acquired per year 3 and radiographs and ul- 

trasound images are acquired even much more frequently. Making 

part of this data available to train computer aided diagnosis algo- 

rithms could have tremendous impact. 

In this paper I discuss three of the main challenges in approach- 

ing diagnosis with machine learning techniques and highlight sev- 

eral interesting research directions. 

2. Varying imaging protocols 

The main obstacle currently preventing wider use of machine 

learning in medical imaging is a lack of representative train- 

ing data. While supervised learning techniques have shown much 

promise in relatively constrained experiments with standardized 

imaging protocols, their performance may quickly deteriorate on 

new images that are acquired under slightly different conditions. 

These techniques operate under the assumption that both train and 

test datasets are random samples drawn from the same distribu- 

tion. In practice however, the available training data is often ac- 

quired earlier with a different imaging protocol, different scanner 

model, or from a different patient population, which would vio- 

late this assumption. An example of typical differences that can be 

found in multi-center MRI studies is given in Fig. 1 . 

One approach to cope with these issues, which is gaining in- 

creasing interest, is to apply transfer learning or domain adapta- 

tion techniques. We discern two classes of approaches that both 

aim to make train and test distributions more similar: weighting 

and feature space transformation techniques. 

In weighting based transfer learning, training data with slightly 

different properties from the target data to analyze is used next to 

some labeled target data. A transfer classifier or regressor is then 

trained on all samples, but the additional, different-distribution 

2 https://www.kaggle.com/c/second- annual- data- science- bowl . 
3 Health at a glance 2015. 

samples receive a lower weight than the labeled target data. These 

different-distribution samples can help to regularize a classifier in 

a data driven manner — better than an uninformed regularizer —

which makes it possible to train a reliable model with fewer la- 

beled target samples. A similar effect can be achieved using the 

parameters of a classifier trained on different data to regularize a 

classifier on the target samples, as is done for instance in adaptive 

SVM. Such approaches may be easier to share between institutes as 

they do not require access to the original data samples that pro- 

duced the classifier. Alternatively, samples, images, or image sets 

can be weighted in a fully unsupervised manner e.g. based on fea- 

ture distribution similarity ( van Opbroek et al., 2015b ) or sample 

similarity ( Heimann et al., 2014 ) with the target data. 

In our research, we found that weighting based transfer learn- 

ing approaches can significantly improve classification accuracy in 

MRI segmentation problems when few labeled target samples are 

available ( van Opbroek et al., 2015a; van Engelen et al., 2015 ). 

However, the number of labeled target samples at which a classi- 

fier trained on only those samples performs as good as the trans- 

fer learning approaches was in these experiments quite low — sev- 

eral hundred labeled voxels distributed over all classes, up to a few 

well chosen, fully annotated images ( Fig. 2 ). This depends of course 

on the data distribution and the model complexity. We would ex- 

pect that with more complex representations, such as an increased 

number of image features or the representations obtained using 

3D deep neural networks, the benefit of transfer learning becomes 

more clear. For example, in a different application using marginal 

space learning to localize ultrasound transducers in fluoroscopy 

sequences, Heimann et al. (2014) could completely eliminate lo- 

calization errors by augmenting training sequences with synthetic 

data and subsequently downweighting less realistic synthetic im- 

ages using a domain adaptation technique. Moreover, there is 

clearly still room for improvement in current methods; many gen- 

eral purpose transfer learning techniques are available but few ex- 

plicitly take (medical) image properties into account. 

While approaches based on sample or image weighting can 

compensate for some changes in distribution, they assume that the 

conditional distribution of the labels given the feature vectors is 

similar between the target data and (at least part of) the training 

data. This will often not be the case, for instance if intensity scale 

or contrast varies between images and the derived image features 

are not invariant to such transformations. A first step to address 

this will typically be image contrast normalization or standardiza- 

tion of image features to zero mean and unit variance, if necessary 

followed by a correction for intensity inhomogeneities. To compen- 

sate for further differences in distributions, a range of supervised 

and unsupervised techniques have been proposed in the machine 

learning and computer vision literature to project data into a latent 

space where distributions are more similar, for instance by mini- 

mizing the so-called Maximum Mean Discrepancy between distri- 

butions in a kernel space. An important remaining issue is that al- 

though transfer learning often improves results on similar tasks, 

without sufficient labeled target data it is not possible to detect 

negative transfer which undermines performance. Transfer learn- 

ing techniques that could guarantee that the result of the trans- 

fer technique is never worse than the supervised solution, such 

as recently proposed for semi-supervised learning ( Loog, 2016 ), are 

therefore of great interest. 

The approaches discussed so far use training data from differ- 

ent sources more wisely and can compensate for possible differ- 

ences between distributions. An alternative strategy would be to 

collect a very large and heterogeneous database for each task that 

contains all possible variations in imaging protocols, similar to the 

approach taken in the diabetic retinopathy competition described 

earlier. Combined with a sufficiently rich feature representation 

https://www.kaggle.com/c/second-annual-data-science-bowl


Download English Version:

https://daneshyari.com/en/article/4953476

Download Persian Version:

https://daneshyari.com/article/4953476

Daneshyari.com

https://daneshyari.com/en/article/4953476
https://daneshyari.com/article/4953476
https://daneshyari.com

