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a b s t r a c t 

Computational vision, visual computing and biomedical image analysis have made tremendous progress 

over the past two decades. This is mostly due the development of efficient learning and inference al- 

gorithms which allow better and richer modeling of image and visual understanding tasks. Hyper-graph 

representations are among the most prominent tools to address such perception through the casting of 

perception as a graph optimization problem. In this paper, we briefly introduce the importance of such 

representations, discuss their strength and limitations, provide appropriate strategies for their inference 

and present their application to address a variety of problems in biomedical image analysis. 

Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved. 

1. Introduction 

The analysis of medical images aims at extraction of hidden, 

clinically relevant information, and has a wide range of applica- 

tions including the detection or automatic outlining of internal 

structures (image segmentation), the summarization of knowledge 

from group populations (spatial normalization), or the association 

of imaging profile with the clinical state of the patient. Inverse 

modeling is often the paradigm used to interpret medical images. 

In simple words given an interpretation objective, the first step 

consists on describing the space of solutions through a paramet- 

ric mathematical model. The parameters of this model are then 

somehow associated with the measurements through an objec- 

tive specific cost function that also imposes some smoothness con- 

straints to make the problem mathematically and computationally 

tractable. Optimal solution to the problem consists in finding the 

set of parameters able to produce the lowest cost of the energy 

function and is often determined through an approximate infer- 

ence algorithm since exact solution is frequently not attainable. 

Numerous mathematical paradigms have been considered in 

the field of medical imaging to implement the aforementioned 

strategy. Mathematical richness, computational complexity, infer- 
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ence mechanisms and modularity and scalability are often their 

classification criteria. Ideally one would like to adopt models of 

limited complexity (it facilitates inference) but able to encode rich 

priors, as well as cost functions that can be exactly minimized (op- 

timal solution) with reasonable computational complexity. Graphi- 

cal models ( Koller and Friedman, 2009 ) is an elegant, powerful and 

computationally efficient method to such an objective. In the re- 

cent years, the field has witnessed an enormous progress due to 

the development of efficient optimization/inference methods cou- 

pled with machine learning algorithms and the availability of large 

scale training data. While probabilistic graphical models have a va- 

riety of useful variants, here we will focus on a Markov Random 

Fields (MRF) formulation, where inference is often expressed as a 

(undirected) graph optimization problem acting on a predefined 

graph structure (fixed number of nodes and connectivity) associ- 

ated with a discrete number of variables. 

A wide variety of tasks in medical image analysis can be for- 

mulated as discrete labeling problems. In very simple terms, a dis- 

crete optimization problem can be stated as follows: we are given 

a discrete set of variables V, all of which are vertices in a graph G. 

The edges of this graph (denoted by E) encode the variables’ rela- 

tionships. We are also given as input a discrete set of labels L . We 

must then assign one label from L to each variable in V . However, 

each time we choose to assign a label, say, x p 1 to a variable p 1 , we 

are forced to pay a price according to the so-called singleton poten- 

tial function g p ( x p ), while each time we choose to assign a pair of 
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labels, say, x p 1 and x p 2 to two interrelated variables p 1 and p 2 (two 

nodes that are connected by an edge in the graph G), we are also 

forced to pay another price, which is now determined by the so 

called pairwise potential function f p 1 p 2 (x p 1 , x p 2 ) . Both the single- 

ton and pairwise potential functions are problem specific and are 

thus assumed to be provided as input. For example, if the aim is 

image segmentation, in order to assign a class label to every voxel 

of the image, an appearance model is learned (from training ex- 

amples) for every class and encoded in the form of a probability 

distribution π ( x ). This probability distribution can be naturally in- 

corporated in the MRF model by setting the unary potentials of the 

segmentation grid for every label to the negative log-probability of 

the respective class: 

g p (x p ) = −log(π(x p )) . 

Our goal is then to choose a labeling which will allow us to pay 

the smallest total price. In other words, based on what we have 

mentioned above, we want to choose a labeling that minimizes the 

sum of all the MRF potentials, or equivalently the MRF energy. This 

amounts to solving the following optimization problem: 

arg min { x p } 
P(g, f ) = 

∑ 

p∈V 
g p (x p ) + 

∑ 

(p 1 ,p 2 ) ∈E 
f p 1 p 2 (x p 1 , x p 2 ) . (1) 

The use of such a model can describe a number of challeng- 

ing problems in medical image analysis. However these simplistic 

models can only account for simple interactions between variables, 

a rather constrained scenario for high-level medical imaging per- 

ception tasks. One can augment the expressive power of this model 

through higher order interactions between variables, or a num- 

ber of cliques { C i , i ∈ [1 , n ] = {{ p i 1 , · · · , p 
i | C i | }} of order | C i | that will 

augment the definition of V and will introduce hyper-vertices: 

arg min { x p } 
P(g, f ) = 

∑ 

p∈V 
g p (x p ) + 

∑ 

(p 1 ,p 2 ) ∈E 
f p 1 p 2 (x p 1 , x p 2 ) 

+ 

∑ 

C i ∈E 
f p 1 ···p n (x p 

i 1 
, · · · , p x 

i 
| C i | ) . (2) 

where f p 1 ···p n is the price to pay for associating the labels 

(x p 
i 1 

, . . . , p x 
i 
| C i | ) to the nodes (p 1 · · · p 

i | C i | ) . Parameter inference, 

addressed by minimizing the problem above, is the most criti- 

cal aspect in computational medicine and efficient optimization 

algorithms are to be evaluated both in terms of computational 

complexity as well as of inference performance. State of the art 

methods include deterministic and non-deterministic annealing, 

genetic algorithms, max-flow/min-cut techniques and relaxation. 

These methods offer certain strengths while exhibiting certain lim- 

itations, mostly related to the amount of interactions which can 

be tolerated among neighborhood nodes. In the area of medical 

imaging where domain knowledge is quite strong, one would ex- 

pect that such interactions should be enforced at the largest scale 

possible. 

The reminder of this paper reviews briefly our contributions in 

the field. Section 2 presents the work done in the area of infer- 

ence algorithms while Section 3 discusses their use to address the 

fundamental problems of biomedical image analysis, while the last 

section concludes the paper and presents perspectives and future 

directions of our work. 

2. Inference on graphical models 

Inference over graphs has been a well studied problem in a 

number of fields such as networks, operational research, compu- 

tational biology and computer vision. Graph-based representations 

were introduced in computer vision at mid-eighties ( Geman and 

Geman, 1984 ) through Markov Random Fields as a novel mathe- 

matical modeling framework constrained though from the lack of 

efficient inference methods as well as processing power - and be- 

came again popular during the past two decades thanks to the de- 

velopment of efficient optimization algorithms ( Kappes et al., 2015; 

Wang et al., 2013 ). 

On one hand, local iterative optimization methods or annealing- 

like methods were the first attempts to perform inference over 

graphs in computer vision and image processing. Computational 

efficiency was the main strength of local iterative methods with 

bottleneck being their inability to converge to a good optimum. 

Annealing methods - despite their theoretical guarantees with re- 

spect to the attained solution - were computationally inefficient 

and practically unusable. The principle of max-flow/min-cut the- 

orem was first introduced in vision at the late eighties ( Greig 

et al., 1989 ) and then re-introduced efficiently ( Boykov et al., 1998 ) 

along with the re-discovery of message passing methods ( Pearl, 

1982 ) despite the absence of theoretical guarantees - such as be- 

lief propagation networks ( Yedidia et al., 20 0 0 ). Such developments 

had as a direct consequence the establishment of graphical mod- 

els as one of the main stream computational vision mathemati- 

cal formalism over the past decade. In the recent years, a number 

of extremely efficient optimization methods were re-introduced 

(e.g. Tree-reweighted Message Passing ( Kolmogorov, 2006 ), the Fast 

Primal-Dual Method ( Komodakis et al., 2008 ) or the Extended Roof 

Duality ( Rother et al., 2007 )) resulting on a great variety of opti- 

mization algorithms addressing the expectations of the field both 

in terms of optimality properties of the attained solution as well 

as in terms of computational complexity for low-rank (pair-wise) 

graphical models. 

On the other hand, the case of higher order models with ar- 

bitrary interactions between nodes (both in terms of connectiv- 

ity as well as in terms of potentials) is far from being consid- 

ered that has reached a mature stage. Significant progress has been 

made when considering higher order interactions of simple na- 

ture such as generalized Potts model ( Kohli et al., 2009 ) or higher 

order models of limited complexity through their mapping to a 

pair-wise one and then use existing optimization methods to per- 

form inference ( Ishikawa, 2011 ). In the case of real-valued vari- 

ables, an alternative consists of using message passing methods 

like belief propagation networks ( Potetz and Lee, 2008 ) that have 

linear complexity with respect to the order of clique. Dual decom- 

position ( Komodakis et al., 2011 ) is another alternative that pro- 

vides more freedom with respect to the class of potentials that 

could be handled while maintaining a competitive advantage in 

terms of computational complexity. In Fix et al. (2015) a more effi- 

cient variant for mapping higher order problems to pair-wise ones 

using principles introduced in Komodakis et al. (2008) was pre- 

sented with better convergence and optimality guarantees. Further- 

more, in Arora et al. (2015) an efficient method to infer solutions 

for higher order graphical models with submodular potentials was 

presented, while in Osokin and Vetrov (2015) a submodular relax- 

ation approach was proposed for pair-wise and higher order graph- 

ical models inference. More recently, Shekhovtsov (2016) tackled 

higher order inference for graphical models which can be ex- 

pressed as the minimization of partially separable function of dis- 

crete variables, while in Khandelwal et al. (2016) the principle of 

active constraints adaptively learnt over multiple iterations was 

adopted. Further aspects on inference, and specifically on the most 

commonly used optimization principles in the context of graphical 

models, are discussed in Komodakis et al. (2016) . 

3. Discrete biomedical image analysis 

Graph-based representations have attracted the interest of the 

biomedical image analysis community immediately after their re- 

appearance in the field of vision. Discrete labeling problems like 

semantic image segmentation were the first to be considered. Let 
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