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a b s t r a c t 

Clinical assessment routinely uses terms such as development, growth trajectory, degeneration, disease 

progression, recovery or prediction. This terminology inherently carries the aspect of dynamic processes, 

suggesting that single measurements in time and cross-sectional comparison may not sufficiently de- 

scribe spatiotemporal changes. In view of medical imaging, such tasks encourage subject-specific longi- 

tudinal imaging. Whereas follow-up, monitoring and prediction are natural tasks in clinical diagnosis of 

disease progression and of assessment of therapeutic intervention, translation of methodologies for cal- 

culation of temporal profiles from longitudinal data to clinical routine still requires significant research 

and development effort s. Rapid advances in image acquisition technology with significantly reduced ac- 

quisition times and with increase of patient comfort favor repeated imaging over the observation period. 

In view of serial imaging ranging over multiple years, image acquisition faces the challenging issue of 

scanner standardization and calibration which is crucial for successful spatiotemporal analysis. Longitu- 

dinal 3D data, represented as 4D images, capture time-varying anatomy and function. Such data benefits 

from dedicated analysis methods and tools that make use of the inherent correlation and causality of 

repeated acquisitions of the same subject. Availability of such data spawned progress in the development 

of advanced 4D image analysis methodologies that carry the notion of linear and nonlinear regression, 

now applied to complex, high-dimensional data such as images, image-derived shapes and structures, or 

a combination thereof. This paper provides examples of recently developed analysis methodologies for 

4D image data, primarily focusing on progress in areas of core expertise of the authors. These include 

spatiotemporal shape modeling and growth trajectories of white matter fiber tracts demonstrated with 

examples from ongoing longitudinal clinical neuroimaging studies such as analysis of early brain growth 

in subjects at risk for mental illness and neurodegeneration in Huntington’s disease (HD). We will dis- 

cuss broader aspects of current limitations and need for future research in view of data consistency and 

analysis methodologies. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Clinical researchers increasingly make use of longitudinal im- 

age studies to examine subject-specific changes due to pathology, 

intervention, therapy, neurodevelopment, or neurodegeneration. 

Moreover, dynamic organ changes as seen in cardiac imaging 

( Peyrat et al., 2010 ) or functional changes as measured in perfu- 

sion imaging, just to name a few, by definition result in time-series 

volumetric image data. Expressions such as development, degen- 

eration, disease progression, recovery, monitoring, or prediction 
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inherently carry the aspect of a dynamic process – suggesting 

that imaging at multiple time points will be necessary. The de- 

tection and characterization of changes from baseline due to dis- 

ease, trauma, or treatment require appropriate image process- 

ing and visualization tools for qualitative and quantitative assess- 

ment of change trajectories. Whereas longitudinal analysis of scalar 

data is well known in the statistics ( Fitzmaurice et al., 2012 ) 

and medical imaging communities, see for example Giedd et al. 

(1999) , Thompson et al. (20 0 0) , Shaw et al. (2008) , Lebel and 

Beaulieu (2011) , Bernal-Rusiel et al. (2013) , its extension to high- 

dimensional image data, shapes, or functional changes represent 

significant challenges. Cross-sectional analysis of longitudinal data 

does not provide a model of growth or change that considers the 

inherent correlation of repeated images of individuals, nor does it 

inform how an individual patient changes relative to a comparable 
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healthy or disease-specific population, an aspect which is highly 

relevant to decision making and therapy planning. 

Although successful early results were presented for image re- 

gression in infant ( Aljabar et al., 2008 ) and aging studies ( Davis 

et al., 2010 ) of cross-sectional data across the age range, standard 

regression is not optimal for longitudinal data because such meth- 

ods do not account for the correlation between repeated measure- 

ments and thus violate the Gauss–Markov assumption of indepen- 

dence. Moreover, individual change trajectories often need to be 

interpreted in relationship to a population growth model, which in 

turn is the hidden group model given a representative set of indi- 

vidual trajectories, and require a common framework based on the 

use of hierarchical linear (or nonlinear) models (HLM). Other typ- 

ical driving applications are concerned with registration of serial 

data of the cardiac cycle, sampled at different time points, or mea- 

suring object shape changes via shape regression, both requiring 

new image registration and modeling approaches. 

The special nature of longitudinal or repeated, time-series data 

of individual subjects, with the inherent correlation of structure 

and function across the sequence of images, spawns the devel- 

opment of new image processing and analysis approaches for 

4-D image data. Such advances aim to tackle the challenging is- 

sues of registration, segmentation, and analysis in the presence of 

geometric and contrast changes over time. New methodologies are 

rapidly evolving, often focusing on the specific application at hand. 

The following is not a comprehensive survey of state-of-the-art 

methodologies for spatiotemporal processing of longitudinal im- 

age data but discusses a few important key aspects of longitudinal 

modeling and analysis guided by current projects of the authors. 

2. Longitudinal study design 

The main characteristics of longitudinal data are the following: 

Correlation: Measurements obtained on the same individual 

are correlated, with measurements obtained closer in time being 

more correlated than the ones further apart. This correlation across 

repeated measurements breaks down the fundamental indepen- 

dence assumption of most statistical regression techniques. 

Unbalanced data: Most longitudinal studies plan to obtain the 

same number of measurements for each individual over a time pe- 

riod; however, in practice this is rarely the case. With studies that 

span over several years, it is inevitable that some individuals will 

drop out of the studies and some might miss their appointments 

and reschedule for a later time. Some imaging data also will have 

to be excluded due to motion of the subject or other imaging arti- 

facts. This leads to uneven spacing of data in the time domain and 

in missing time points. 

3. Longitudinal analysis of appearance: application to DTI 

Neurodevelopment or neurodegeneration can be characterized 

by changes of image contrast or appearance in longitudinal imag- 

ing, reflecting specific structural properties, e.g. scalar diffusion in- 

variants from diffusion imaging. In view of unbalanced data and 

missing time points, a common repeated analysis of variance (re- 

peated ANOVA) is questionable as it assumes that individuals have 

random effects that are constant over time. Second, experience in 

different applications demonstrate that temporal change is often 

not linear but requires a more complex nonlinear modeling ( Geng 

et al., 2012 ). Both favor the use of parametric growth models that 

reflect the underlying nature of change, and mixed effects mod- 

els, a class of statistical methods that model the correlation of 

measurements of an individual along with modeling the mean 

response of a population over time. Fig. 1 represents an exam- 

ple where measurements decrease nonlinearly over time (here we 

measure radial diffusivity from DTI tensor data). Applying nonlin- 

ear regression to the sample points as if these were cross-sectional 

data, we obtain a result which seems to well reflect the time 

course. 

However, considering repeated data from subjects and calculat- 

ing fixed and random effects via nonlinear mixed-effects model- 

ing (NLME), the result is significantly different since it represents 

the average trajectory. This example well demonstrates that longi- 

tudinal data includes important additional information not avail- 

able from cross-sectional data, but also highlights that in the pres- 

ence of true longitudinal data, regression may not be the method 

of choice. We seek a method such as mixed-effects modeling that 

enables within-individual changes in the response variable, and 

thereby has the capacity to separate between cohort and age ef- 

fects. This is of particular importance in health sciences where het- 

erogeneity of individuals due to genetic and environmental factors 

plays an important role in the progression of the disease or the 

response of individuals to treatment. 

3.1. Linear and nonlinear mixed-effects models 

Linear mixed-effects models are models where both the fixed 

and random effects enter the model linearly. In these models, the 

individual trend is a linear model built upon the overall population 

trend, which is also linear. Linear mixed-effects models can be for- 

mulated as: 

y i = X i β + Z i b i + e i i = 1 , . . . , M, (1) 

where y i is the n i × 1 vector of measurements for subject i. β is 

a p × 1 vector of fixed effects and b i is the q × 1 vector of ran- 

dom effects. X i and Z i are design matrices that relate fixed effects 

and random effects to y i . X i is the n i × p matrix, which can in- 

clude variables such as clinical group, age and gender. Z i is the n i 
× q matrix for the random effects and includes variables such as 

age. b i is a multivariate Gaussian with mean zero, b i ∼ N (0 , �) , 

and e i is the n i × 1 measurement error and is normally distributed 

N (0 , σ 2 ) . Random effects and measurement errors are assumed to 

be independent. 

The nonlinear mixed effect model (NLME) is a generalization of 

linear mixed effect and nonlinear regression ( Pinheiro and Bates, 

2006 ). In NLME, some or all of the fixed or random effects enter 

the model nonlinearly. In the NLME model, each individual’s re- 

sponse is modeled as: 

y i = f (φi , t i ) + e i , (2) 

where φ = A i β + B i b i . Similar to the linear mixed effect model, β
are the fixed effect and b i are random effects with distribution 

N ∼ (0 , �) . A i and B i are design matrices that indicate whether 

specific fixed or random effect should be included in the model. 

The function f can be any nonlinear function, to be evaluated based 

on model selection. Fig. 2 illustrates a comparisons of longitudinal 

modeling options for nonlinear mixed-effects modeling. 

3.2. Analogy to traditional clinical practice 

One of the important aspects of longitudinal analysis is the di- 

rect measurement of intra-individual changes over time. Even if all 

the observations for all the time points are not available for a sub- 

ject, pooling the data from other subjects in the study along with 

the available observations for the individual enables prediction of 

individual trajectories ( Sadeghi et al., 2014; Rekik et al., 2016 ). The 

estimation of personalized growth profiles is of great clinical inter- 

est as individuals respond differently to treatment and show dif- 

ferent growth trajectories. Also, in cases where only one scan is 

available, the intensity or diffusion parameters of the subject can 

be compared to the normative model. This way, one can predict 
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