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a b s t r a c t 

We consider an interference-limited, ad-hoc wireless network in the high SINR regime and address the 

optimization of network utility and energy efficiency by cross-layer network control. Unlike the typi- 

cal complex approach that requires solving a scheduling, routing and power control problem at each 

time slot, we propose running a single iteration of a gradient power control algorithm towards the op- 

timal power allocation, together with backpressure multipath routing and flow control. Despite the fact 

that the respective optimizations at each time slot are never fully solved, we prove, under a high SINR 

assumption, that the proposed updates suffice to optimize network utility and energy efficiency. Main 

components of the joint algorithm are flow control at each node (based on local queues), backpressure 

routing/scheduling, and power control driven by backlog, interference, and power cost related informa- 

tion. We provide simulation results that illustrate the convergence to the optimal flow rates and link 

powers, compare against related algorithms from the literature, and examine the validity of the high 

SINR approximation. Our approach may allow in-practice performance gains and inspire more research 

on low-complexity, practical network control. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The exponential growth of mobile data traffic (an eight-fold 

increase from 2015 to 2020 predicted in [1] ) calls for network 

management and control that make the most of the wireless net- 

work resources. To increase network utility, a cross-layer approach 

has been proposed; this jointly allocates resources in the physi- 

cal, MAC, network and transport layers. There exists a large body 

of work in this area (refer e.g. to the monographs [2,3] for an 

introduction). Among these designs, power control that operates 

jointly with routing, scheduling and flow control can yield a signif- 

icantly higher aggregate utility than the one achieved under a fixed 

power allocation. Unfortunately, real-time, in-practice realization of 

a utility-optimal allocation is often hindered by the high complex- 

ity (typically NP-hard) of the optimal centralized solutions, and the 

lack of distributed implementations. 

In this paper, we focus on network optimization under the 

physical interference model, where the transmission rate on each 

link is assumed to depend on transmit power on that link and on 

interference from other links, in a Shannon capacity – like fashion. 

In this context, optimal coordination of interfering transmissions 
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requires that a global weighted-sum-rates maximization problem 

is solved at each scheduling interval, where the weights are time- 

varying and depend on the current queue lengths at the network 

layer (approach initiated in [4] ). In general, this optimization prob- 

lem (see also [5] ) is nonconvex, in fact in [6] it was proved to be 

NP-hard. Moreover, even when the weighted-rates maximization 

is fully solved, the network controller is challenged to collect all 

queue length information and propagate the optimal power vec- 

tor to all nodes within each traffic interarrival interval. While dis- 

tributed solutions have been developed in [7] , these require that 

the weighted-rates optimization is fully solved. Hence, such ap- 

proaches may require tens or hundreds of power updates and mes- 

sage exchanges between neighboring nodes for convergence, all of 

which need to occur within each scheduling interval. 

Here, we address network utility maximization while also ac- 

counting for energy efficiency. The latter is gaining importance in 

emerging ad-hoc, sensor and heterogeneous wireless networks. To 

that end, we consider a network optimization problem that cap- 

tures the tradeoff between maximizing flow utilities and minimiz- 

ing energy expenditure. This energy-utility optimization is solved 

by a cross-layer distributed algorithm that is computationally sim- 

pler than the approaches mentioned above. More specifically, the 

paper contains two contributions: 
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(i) We introduce a distributed cross-layer algorithm for utility- 

energy maximization in multihop wireless networks. The algo- 

rithm is obtained by a primal-dual approach to network opti- 

mization, and consists of three components; flow control, back- 

pressure routing and scheduling, and power control. These are 

coupled through queue length information at the network layer, 

in an instance of cross-layer interaction: Local queue lengths 

are used for flow control at ingress nodes, whereas differen- 

tial queue length and interference information drive the routing 

and power control functions. The main advantage of the algo- 

rithm – low complexity – is due to power control that performs 

a single iteration at each time slot to mitigate interference , grad- 

ually ascending towards the maximum of the weighted-sum- 

rates. This is a simplification to the standard backpressure pol- 

icy (see e.g [2,6,8,9] and the recent survey [10] ), which requires 

that a weighted-sum-rates optimization is fully solved for each 

instance of the network queues, and therefore may be too com- 

plex to realize in practice. Thus, the merit of the proposed ap- 

proach is simplicity, allowing real-time, dynamic network con- 

trol, amenable to implementation in wireless systems. 

(ii) We prove that, under a high-SINR assumption, the joint cross- 

layer algorithm optimizes the utility-energy efficiency trade- 

off, despite the fact that the power control updates never 

completely solve any instance of the weighted-rate optimiza- 

tion problem. The proof uses a quadratic Lyapunov function of 

queue lengths and log-transformed powers. We show that the 

Lyapunov function has a negative drift when the power updates 

evolve in parallel with queue dynamics, towards the solution of 

the network optimization problem. 

The high-SINR assumption is a key simplification that enables 

the proposed cross-layer algorithm to optimize utility and energy 

efficiency. This assumption is valid in CDMA networks with large 

processing gain, but, as has been noted in the literature [6] , can 

be quite inaccurate when interference is strong, and thus does 

not hold in general. In that case, the achievable throughput region 

may differ significantly from the one obtained by the high-SINR 

approximation, and the latter may be considerably smaller. Then 

the proposed low-complexity approach will yield suboptimal per- 

formance, with respect both to throughput and utility. The loss of 

performance depends on the specific interference geometry of the 

wireless network; in the numerical results we show this loss for 

a simple example. Quantifying the fraction of the optimal network 

objective achieved by the primal-dual dynamics under any SINR is 

an important but challenging task, which is left as a topic for fu- 

ture work. 

Our low-complexity approach is inspired by the algorithm in 

[11] . There, a randomized update maximizes throughput with lin- 

ear complexity, at a cost of an exponential increase in delays. Here, 

the overall network objective leads to a convex optimization prob- 

lem, and we show that a deterministic incremental improvement 

with the gradient suffices for achieving maximum utility and en- 

ergy efficiency. 

The rest of this paper is organized as follows: Section 2 de- 

scribes the wireless network model. In Section 3 we present the 

cross-layer network control algorithm. Numerical results are given 

in Section 4 , while Section 5 contains analysis and proofs of con- 

vergence. Section 6 discusses related work, and Section 7 con- 

cludes the paper. 

2. System model 

The wireless network consists of N nodes. Let G i, j be the chan- 

nel gain of each link ( i, j ), i, j = 1 , . . . , N, i � = j and L denote the 

set of links. Note that we consider two disjoint links between two 

nodes i and j , the links ( i, j ) and ( j, i ). Assume the network evolves 

in continuous time, with t denoting time. 

Multi-hop network: Let r k 
i 
(t) be the rate at which data des- 

tined to node k is injected into the network at node i , at time t . 

Data may reach their destination node via a multi-hop route. As- 

sume each node maintains a separate queue per destination; let 

x k 
i 
(t) be amount of data destined to node k that are queued at 

node i at time t . Let f k 
i, j 

(t) denote the rate at which node i ’s data 

eventually destined to k are forwarded to j at time t . Then, the 

time evolution of the queue lengths is given by 

dx k 
i 
(t) 

dt 
= 

[ 

r k i (t) + 

N ∑ 

j=1 

f k j,i (t) −
N ∑ 

j=1 

f k i, j (t) 

] + 

x k 
i 
(t) 

, (1) 

where we define 

[ a ] + 
b 

:= 

{
a, if b > 0 

max (a, 0) otherwise. 

Access model and link rates: We consider an SINR-based 

model of medium access, i.e., one allowing simultaneous transmis- 

sions over interfering links, where the attained link rate C i, j de- 

pends on its SINR γ i, j . Specifically, the transmitter node i of each 

link ( i, j ) selects a transmission power p i, j ( t ) in time t . Transmit 

powers are upper bounded by the maximum transmission power 

p max . Then, the SINR γ i, j at the receiver node j is given by 

γi, j (p (t)) := 

p i, j (t) G i, j 

I i, j (p (t)) + η
, 

where 

I i, j (p (t)) := 

∑ 

(k,n ) � =(i, j) 

p k,n (t) G k, j 

is the interference, and η denotes the noise power. We assume that 

each link ( i, j ) attains a rate C i, j that is a logarithmic function of 

the SINR γ i, j , similar to Shannon’s capacity formula 

C i, j (p (t)) = log 
(
1 + γi, j (p (t)) 

)
. 

The sum of all commodities k flows f k 
i, j 

across each link ( i, j ) 

should be supported by the link capacity, i.e., ∑ 

k 

f k i, j (t) ≤ C i, j (p (t)) ∀ (i, j) ∈ L , (2) 

should hold at all times t . 

High-SINR regime: A key simplification in the system model 

occurs when the network operates in the high-SINR regime, as is 

the case e.g. in CDMA networks. This assumption, though clearly 

not always valid, has also been adopted in related work (see [7,12] ), 

as the high-SINR regime leads to a tight approximation of the 

transmission rates by 

C i, j (p (t)) = log 
(
γi, j (p (t)) 

) ∀ (i, j) ∈ L . (3) 

Moreover, prior work has shown that the high-SINR regime 

yields a convex rate region [13] , in which case the network can 

only benefit from simultaneous activation of all links.Thus, al- 

though transmit powers are allowed to be zero, 

p i, j ∈ [0 , p max ] ∀ (i, j) ∈ L , 

these will be strictly positive in the high-SINR regime. We note 

that a dual-radio architecture is not necessarily required by the si- 

multaneous activation of both links between two nodes (i.e., both 

( i, j ) and ( j, i )), as recent advances in hardware design allow single- 

radio full-duplex nodes. 

Network objective: As is customary in the utility maximiza- 

tion framework, we associate with each flow entering at node i 

and destined to node k a utility function U 

k 
i 
(r k 

i 
) , which is assumed 
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