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a  b  s  t  r  a  c  t

This  paper  proposes  a framework  based  on  the  Dempster–Shafer  Theory  of  Evidence  (DSTE),  Possibility
Theory  (PT)  and  Fuzzy  Random  Variables  (FRVs)  to  represent  expert  knowledge  and  propagate  uncer-
tainty through  models.  An  example  of application  is  given  with  reference  to a check  valve  of a turbo-pump
lubricating  system  in a Nuclear  Power  Plant,  which  is  degrading  due  to mechanical  fatigue  and  undergoes
condition-based  maintenance  interventions.  The  component  degradation-failure  model  used to  evaluate
the  performance  of  the maintenance  policy  contains  parameters  subject  to epistemic  uncertainty.
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Introduction

Processing of uncertainty is crucial in industrial applications
and consequently in decision making processes [1]. In practice, it
is often convenient to distinguish uncertainty due to the inherent
variability of the phenomena of interest from that due to lack of
precise knowledge [2]. The former type is referred to as aleatory,
irreducible, stochastic or random uncertainty and describes the
inherent variation associated with the physical system or the
environment, the latter is referred to as epistemic, subjective or
reducible uncertainty, and relates to the lack of precise knowl-
edge of quantities or processes of the system or the environment.
Although probability theory is well suited to handle stochastic
uncertainty due to variability, it has been argued that the proba-
bilistic approach may  have some limitations in the representation
and treatment of epistemic uncertainty in situations of poor knowl-
edge, since it tends to force assumptions which may  not be justified
by the available information [3]. For example, ignoring whether
a value of a parameter is more or less probable than any other
value within a given range does not justify assuming a uniform
probability distribution, which is the less informative probability
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distribution according to both the Laplace principle of insufficient
reason and the maximum entropy criterion [4].

In this work, we consider alternative approaches to probabil-
ity theory for the representation of epistemic uncertainty, such as
Dempster–Shafer Theory of Evidence (DSTE) and Possibility Theory
(PT). These approaches have been considered due to their ability in
handling the uncertainty associated to the imprecise knowledge
on the values of parameters used by expert information systems
and for which reliable data are lacking. In this respect, it is wor-
thy noticing that some research effort has been devoted to capture
the relationships between DSTE, PT and probability theory, and a
vivid research debate is still ongoing about the capability of proba-
bility theory in representing the epistemic uncertainty ([4–7]). For
example, in Ref. [8], a new framework is proposed, which extends
Bayesian Theory to perform probabilistic inference with uncertain
evidence. The extension is based on an idealized view of inference
in which observations are used to rule out possible valuations of
the variables in a modeling space. On the contrary, in Ref. [9] prob-
ability is conceptualized at the ‘betting’ level where decisions are
made, which is different from the ‘credal’ level, where we find the
epistemic uncertainty we are dealing with in this work. A pignistic
transformation is required to pass from the credal level to the bet-
ting level. In Ref. [9], the authors also provide a comparison between
the Bayesian framework and the Transferable Belief Model (TBM),
which highlights that they may  lead to different results.

The strength of DSTE and PT lies in their capability of repre-
senting the epistemic uncertainty in a way  less committed than
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that offered by probability theory. PT has been embraced to tackle
a number of interesting issues pertaining to different fields such
as graph theory [10], database querying [11], diagnostics [12],
data analysis [13] and classification [14], agricultural sciences [15],
probabilistic risk assessment (e.g., [16,17]), etc. to cite a few. Anal-
ogously, applications of DSTE can be found in diverse domains such
as signal and image processing [18], business decision making [19],
pattern recognition [20], clustering [21], etc.

In spite of the liveliness of the research in the field, it seems fair
to say that the non-probabilistic treatment of uncertainty within
soft computing methods has not yet been exhaustively investi-
gated. After all, given the relative immaturity and small size of
research community working on non-probabilistic approaches, it
is hardly fair to expect that these are elaborated from soft methods
to the same extent of that of probability theory [22]. In this respect,
two main considerations can be done on the basis of the authors’
best knowledge:

• There is no work in the literature which performs a compre-
hensive comparison of the main techniques to represent and
propagate epistemic uncertainty together with aleatory uncer-
tainty, from a practical, engineering point of view. For example,
an interesting comparison of PT, DSTE and probability theory is

provided in Ref. [23], where a simple case study is introduced as a
workbench to highlight the differences among those approaches;
however, also in that case the comparison is not complete, as nei-
ther (type 1 or 2) fuzzy theory nor Bayesian probability theory are
considered. In conclusion, the issue of comparing the different
frameworks is still open and future research effort will be spent
by the authors in this direction. On the other side, while doing
this, it is important to bear in mind that, quoting Smets [9]:

“Uncertainty is a polymorphous phenomenon. There is a dif-
ferent mathematical model for each of its varieties. No single
model fits all cases. The real problem when quantifying uncer-
tainty is to recognize its nature and to select the appropriate
model. The Bayesian model is only one of them. The Transfer-
able Belief Model is also only one of them. Each has its own
field of applicability. Neither is always better than the other”

For example, in Ref. [24] a different technique has been pro-
posed to cope with the maintenance assessment issue in the case
in which a team of experts is available to provide the ill-defined
parameters, whereas the method proposed in this work assumes
that there is just one expert providing them.

• PT has never been applied in the context of maintenance model-
ing, which is the core of this paper.

Maintenance is a key factor for safety, production, asset manage-
ment and competitiveness. Establishing an optimal maintenance
policy requires the availability of logic, mathematical and compu-
tational models for:

(i) The evaluation of performance indicators characterizing a
generic maintenance policy. Possible performance indicators
are the production profit, the system mean availability, the
maintenance costs, etc.

(ii) The identification of the optimal maintenance intervention
policy from the point of view of the identified performance indi-
cators, while fulfilling constraints such as those regarding safety
and regulatory requirements. In practice, this multi-objective
optimization problem has to be faced in a situation in which
some constraints and/or the objective functions are affected
by uncertainty. To effectively tackle this problem, a number
of approaches have been already propounded in the literature
considering different framework for uncertainty representa-
tion: probability distributions in Refs. [25–27], fuzzy sets in
Ref. [28] and [29], and plausibility and belief functions in Refs.
[30,31].

The present work aims at contributing to the above step (i) by
developing a methodology for maintenance performance assess-
ment that properly processes the involved uncertainties. More
specifically, we consider a situation in which:

• a stochastic model of the life of the component of interest,
in terms of degradation process, failure behavior and mainte-
nance interventions is known without any uncertainty. This is,
for example, the case for the degradation process ‘fatigue’ which
has been successfully modeled by means of gamma processes
[32], Weibull distributions [33], Paris–Erdogan law [34], etc.

• The model of the component’s behavior depends on a num-
ber of ill-defined parameters. With reference to the example
of fatigue degradation, the gamma  process, Weibull distribu-
tion and Paris–Erdogan law depend on parameters whose values
are usually not precisely known. Moreover, knowledge of other
model parameters such as those describing the maintenance
effectiveness (e.g., the improvement of the component degrada-
tion), duration and cost may  also be imprecise. This framework
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