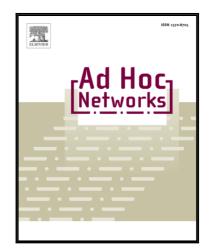
Accepted Manuscript

Capacity and Contention-based Joint Routing and Gateway Selection for Machine-Type Communications


Muhammad Omer Faroog, Cormac J. Sreenan, Kenneth N. Brown

PII: S1570-8705(17)30078-1 DOI: 10.1016/j.adhoc.2017.04.006

Reference: ADHOC 1540

To appear in: Ad Hoc Networks

Received date: 8 October 2016
Revised date: 4 March 2017
Accepted date: 18 April 2017

Please cite this article as: Muhammad Omer Farooq, Cormac J. Sreenan, Kenneth N. Brown, Capacity and Contention-based Joint Routing and Gateway Selection for Machine-Type Communications, *Ad Hoc Networks* (2017), doi: 10.1016/j.adhoc.2017.04.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Capacity and Contention-based Joint Routing and Gateway Selection for Machine-Type Communications

CTVR, Department of Computer Science, University College Cork, Ireland Email: omer.farooq@insight-centre.org, cjs@cs.ucc.ie, k.brown@cs.ucc.ie

Abstract

Typically, in machine-type communications (MTC) devices communicate with servers over the Internet. In a large-scale machine-to-machine area (M2M) network, the devices may not connect directly to the Internet due to radio transmission and energy limitations. Therefore, the devices collaborate wirelessly to relay their data to a gateway. A large-scale M2M area network may have multiple gateways, selecting a proper gateway for the devices can have immense impact on the network's performance. We present the channel capacity and contention-based joint routing and gateway selection methods for MTC. Based on channel capacity and contention, our methods select the best gateway on per-packet, per-flow, and per-node basis. We compare the methods' performance with existing methods using simulation and test-bed experiments. We analyse the impact of the number of gateways, physical distribution of transmitters, control overhead, and duty-cycling on the performance of the gateway selection methods. Our results demonstrate that, in duty-cycled operations, the methods' performance depends on control overhead and making a good trade-off between load imbalance to different gateways and a forwarding path's length. Otherwise only the latter impacts the methods' performance. In general, our node-based best gateway selection method makes a better trade-off and exhibits lower control overhead, hence it demonstrates better performance. Moreover, our methods demonstrate better performance as compared to an existing state-of-the-art joint routing and gateway selection method.

Keywords. Machine-Type Communications, Routing, Gateway Selection, Channel Capacity, Contention

1 Introduction

Machine-type communication (MTC) is a form of data communication that allows smart networked devices to communicate with each other without human intervention [1]. It is an essential component for many smart city applications including smart roads and intelligent transportation, smart homes, smart parking, and waste management [2]. It is anticipated that MTC will have significant economic impact, and the total market size by 2025 is estimated to be 30 billion connected devices, with 7 billion MTC devices connected to the Internet through cellular networks [3].

Figure 1 shows a general communication architecture of MTC. We elaborate the architecture with the help of a smart roads and intelligent transportation system. In the system, many smart devices monitor traffic on a network of roads, and may report accidents, traffic rule violations,

Download English Version:

https://daneshyari.com/en/article/4953553

Download Persian Version:

https://daneshyari.com/article/4953553

<u>Daneshyari.com</u>