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a  b  s  t  r  a  c  t

Four-wave  mixing  (FWM)  crosstalk  is the  dominant  nonlinear  effect  in long  haul,  repeaterless,  wave-
length  division  multiplexing  (WDM)  lightwave  fiber optical  communication  systems.  To  reduce  FWM
crosstalk  in  optical  communication  systems,  unequally  spaced  channel  allocation  method  is used.  One  of
the unequal  bandwidth  channel  allocation  techniques  is designed  by using  the  concept  of  Golomb  ruler.
It  allows  the  gradual  computation  of  an  optimally  allocated  channel  set such  that  degradations  caused
by  inter-channel  interference  (ICI) and  FWM  is minimal.  This  paper  applies  two  soft  computing  based
approaches,  i.e.,  Genetic  Algorithm  (GA)  and  Biogeography  Based  Optimization  (BBO)  to  generate  near-
optimal  Golomb  ruler  sequences  in  reasonable  time.  The  generated  sequences  have  been  compared  with
the two  other  classical  approaches  namely  Extended  Quadratic  Congruence  (EQC)  and  Search  Algorithm
(SA). It has  been  observed  that  BBO/GA  outperforms  the  other  two  approaches.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In conventional wavelength division multiplexing systems,
channels are usually assigned with center frequencies (or wave-
length) equally spaced from each other. Due to equal spacing
among the channels there is very high probability that noise signals
(such as FWM  signals) may  fall into the WDM  channels, resulting
in severe crosstalk [1].

FWM  crosstalk is the main source of performance degradation
in all WDM  systems. Performance can be substantially improved
if FWM  generation at the channel frequencies is avoided. It is
therefore important to develop algorithms to allocate the chan-
nel frequencies in order to minimize the FWM  crosstalk effect. The
efficiency of FWM  signals depends on the channel spacing and fiber
dispersion [2,3]. If the frequency separation of any two channels of
a WDM  system is different from that of any other pair of channels,
no FWM  signals will be generated at any of the channel frequen-
cies. This suppresses FWM  crosstalk [4–7]. Thus, the use of proper
unequal channel spacing keeps FWM  signals from coherently inter-
fering with the desired signals.

In order to reduce the FWM  crosstalk effects in WDM  systems,
several unequally spaced channel allocation (USCA) techniques
have been studied in literature [1,8–14]. An optimum-USCA
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(O-USCA) technique ensures that no FWM  crosstalk signals will
ever be generated at any of the channel frequencies if the frequency
separation of any two channels is different from any other pair of
channels in a minimum operating bandwidth [11].

Forghieri et al. [6] treated the channel-allocation design as an
integer linear programming (ILP) problem by dividing the total
available bandwidth into equal frequency slots. But the ILP problem
was NP-complete and no general or efficient method was known
to solve the problem. So optimum solutions (i.e., channel alloca-
tions) were obtained only with an exhaustive computer search
[1].

However, the techniques [1,8–14] have the drawback of
increased bandwidth requirement as compared to equally spaced
channel allocation. This is due to the constraint that the minimum
channel spacing between each channel and that the difference in
the channel spacing between any two channels is assigned to be
distinct. As the number of channels increases, the bandwidth for
the unequally spaced channel allocation methods increases in pro-
portion [4].

Optimal Golomb ruler (OGR) [7,15–17] has been proposed in
literature for optimal channel allocation. This method for chan-
nel allocation achieves reduction in FWM  crosstalk effect with
the WDM  systems without inducing additional cost in terms of
bandwidth. This technique allows the gradual computation of a
channel allocation set to result in an optimal point where degrada-
tion caused by inter-channel interference (ICI) and FWM  is minimal
[4,16].
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Much effort has been made to compute short or dense Golomb
rulers and to prove them optimal. Golomb rulers represent a
class of problems known as NP-complete [18]. Unlike the trav-
eling salesman problem (TSP), which may  be classified as a
complete ordered set,  the Golomb ruler may  be classified as
an incomplete ordered set.  The exhaustive search [19,20], with-
out heuristics, of such problems is impossible for higher order
models. As marks are added to the ruler, the time required to
search the permutations and to test the ruler increases exponen-
tially. The success of soft computing approaches such as Genetic
Algorithms (GAs) [21–23] in finding relatively good solutions to
NP-complete problems provides a good starting point for meth-
ods of finding near-optimal Golomb ruler sequences. Hence, soft
computing approaches seem to be very effective solutions for
the NP-complete problems. No doubt, these approaches do not
give the exact or best solutions but reasonably good solutions
are available at a given cost. In this paper, a novel optimization
algorithm based upon the theory of biogeography called Biogeog-
raphy Based Optimization to generate the near-OGR sequences for
various marks in reasonable time and its comparison with two
conventional/classical approaches and Genetic Algorithm is being
introduced.

The remainder of this paper is organized as follows: Section
2 introduces the concept of Golomb rulers. Section 3 presents
the problem formulation. Section 4 briefly introduces two soft
computing approaches, i.e., Genetic Algorithms and Biogeography
Based Optimization. This section further presents steps to gen-
erate the near-optimal Golomb ruler sequences by using these
soft computing approaches. Section 5 provides simulation results
comparing with conventional/classical approaches of generating
unequal channel spacing, i.e., Extended Quadratic Congruence
(EQC) and Search Algorithm (SA). Section 6 presents some conclud-
ing remarks.

2. Golomb rulers

The idea of Golomb rulers was first introduced by Babcock [7]
in 1952, and further derived in 1977 from the relevant work
by Golomb et al. [15], a professor of mathematics and electrical
engineering at the University of Southern California. Accord-
ing to Colannino [24] and Dimitromanolakis [25], Babcock [7]
first discovered Golomb rulers up to 10-marks, while analyz-
ing positioning of radio channels in the frequency spectrum. He
investigated inter-modulation distortion appearing in consecu-
tive radio bands and observed that when positioning each pair
of channels at a distinct distance, then third order distortion
was eliminated and fifth order distortion was lessened greatly.
According to Rankin [26], all of rulers’ up to eight are optimum,
the nine and ten mark rulers that Babcock presents are near-
optimum.

The term Golomb ruler refers to a set of non-negative inte-
gers such that no distinct pairs of numbers from the set have
the same difference [27]. These numbers are referred to as marks
[15,21,28] and correspond to positions on a linear scale. The differ-
ence between the values of any two marks is called the distance
between those marks. The difference between the largest and
smallest number is referred to as the length of the ruler. The number
of marks on a ruler is sometimes referred to as the size of the ruler.
Unlike usual rulers, Golomb rulers measure more discrete lengths
than the number of marks they carry. Normally the first mark of the
ruler [15,16,29] is set on position 0. Since the difference between
any two numbers is distinct, the new FWM  frequencies generated
would not fall into the one already assigned for the carrier chan-
nels. Golomb rulers are not redundant as they do not measure the
same distance twice [29].

Fig. 1. A Golomb ruler with 4-marks and length 6.

Fig. 1 shows an example of Golomb ruler. The distance between
each pair of marks is also shown in the figure [21].

The particularity of Golomb rulers is that all differences between
pairs of marks are unique [29,30]. Although the definition of a
Golomb ruler does not place any restriction on the length of the
ruler, researchers are usually interested in rulers with minimum
length.

A perfect Golomb ruler measures all the integer distances from 0
to L, where L is the length of the ruler [18,21,22]. In other words, the
difference triangle of a perfect Golomb ruler contains all numbers
between one and the length of the ruler. The length [31,32] of an
n-mark perfect Golomb ruler should be at least (1/2)n(n − 1).

An optimal Golomb ruler is defined as the shortest length ruler
for a given number of marks [21,33]. There can be multiple different
OGRs for a specific number of marks.

For example, as shown in Fig. 2 the set (0, 1, 3, 7) is a non-optimal
4-mark Golomb ruler since its differences are (1 = 1 − 0, 2 = 3 − 1,
3 = 3 − 0, 4 = 7 − 3, 6 = 7 − 1, 7 = 7 − 0), all of which are distinct. As
from the differences it is clear that the number 5 is missing so it is
not a perfect Golomb ruler sequence.

However, the unique optimal Golomb 4-mark ruler is (0, 1, 4, 6),
which measures the distances (1, 2, 3, 4, 5, 6) (and is therefore also
a perfect ruler) as shown in Fig. 1.

The OGRs are used in a variety of real-world applications includ-
ing communications and radio astronomy, X-ray crystallography,
coding theory, linear arrays, computer communication network,
PPM communications, circuit layout, geographical mapping and
self-orthogonal codes [7,15,21,22,26].

An n-mark Golomb ruler is a set of ‘n’ distinct nonnegative inte-
gers (a1, a2, . . .,  an), called marks,  such that the positive differences
|ai − aj|, computed over all possible pairs of different integers i, j = 1,
2,. . .,  n with i /= j are distinct [20]. Let an be the largest integer in
an n-mark Golomb ruler [34]. Then an n-mark Golomb ruler (0, . . .,
an) is said to be optimal if and only if

1. There exists no other n-mark Golomb rulers having smaller
largest mark an, and

Fig. 2. An optimal Golomb ruler of 4-marks and length 7.
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