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a  b  s  t  r  a  c  t

The  objective  of  a  base  isolation  system  is to decouple  the  building  from  the  damaging  components  of  the
earthquake  by  placing  isolators  between  the  superstructure  and  the  foundation.  The  correct  identification
of these  devices  is,  therefore,  a critical  step  towards  reliable  simulations  of  base-isolated  systems  sub-
jected  to  dynamic  ground  motion.  In  this  perspective,  the  parametric  identification  of seismic  isolators
from  experimental  dynamic  tests  is here  addressed.  In  doing  so,  the  focus  is  on identifying  Bouc–Wen
model  parameters  by means  of  particle  swarm  optimization  and differential  evolution.  This paper  is
especially  concerned  with  the  assessment  of  these  non-classical  parametric  identification  techniques
using  a standardized  experimental  protocol  to  set  out  the  dynamic  loading  conditions.  A critical  review
of  the  obtained  outputs  demonstrates  that  particle  swarm  optimization  and differential  evolution  can  be
effectively  exploited  for the  parametric  identification  of seismic  isolators.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The use of base-isolators for protecting buildings, bridges, liq-
uid storage tanks, oil pipelines, and nuclear reactor plants against
the damaging effects of seismic loadings has become very frequent
in recent decades [1,2]. The advantage of base isolation systems
lies in avoiding that the damaging effects of the earthquakes reach
the structures by placing particular devices (isolators) between the
protected system and the foundation. In most of the seismic isola-
tors, thin reinforcing steel plates are alternated with thick rubber
pads. Conventional isolators are basically produced in two phases:
first, the compounded rubber sheets with the interleaved steel
plates are put into a mold, and heating under pressure for several
hours (the so-called vulcanization) is then performed to complete
the manufacturing process. The performance of a seismic isolator
depends on many factors, such as the rubber typology, the com-
pound, the thickness and the process of vulcanization of the pads.
So far, the Bouc–Wen hysteretic model is considered the most
appropriate to simulate the nonlinear behavior of seismic isola-
tors. However, because of the lack of settled relationships between
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mechanical model and properties of the isolator (i.e., the degree of
vulcanization or the precise compound used to build the device),
the correctness of the structural simulations requires a reliable
identification of the model parameters from experimental tests.

Among the available numerical techniques, non-classical
approaches based on soft computing methods are attracting grow-
ing interests in system identification and damage detection, see
for instance Refs. [3,4]. Within this framework, the parametric
identification problem for multi-degree-of-freedom structural lin-
ear systems was  resolved using genetic algorithm (GA) [5], Big
Bang–Big Crunch optimization [6], particle swarm optimization
(PSO) and differential evolution (DE) [7]. Soft computing-inspired
techniques are also exploited for the parametric identification of
nonlinear dynamic systems. An overview about the most recent
applications in this field [8] revealed that GAs are frequently
employed in the parametric identification of hysteresis models,
such as the Bouc–Wen model, the Jiles–Atherton model, and the
Preisach model. On the other hand, PSO and DE  were considered in
the parametric identification of hysteresis models [9,10], viscous
damping [11,12], and Van der Pol-Duffing oscillators [13].

The use of non-classical methods for the parametric identifi-
cation of Bouc–Wen-type models has been continuously gaining
increased attention in literature. For instance, a multi-species GA
was proposed in Ref. [14] to identify Bouc–Wen models from noisy
data. A Bouc–Wen model was identified by means of DE in Ref. [15],
where the authors presented some results for experimental data
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obtained from a nuclear power plant. Kwok and co-authors [16]
used a GA to identify a non-symmetrical Bouc–Wen model pro-
posed to represent the hysteretic behavior of magnetorheological
fluid dampers. A memetic GA and a PSO algorithm were adopted
in Refs. [17,18], respectively, to reproduce the cyclic response of
a bolted–welded steel connection through a Bouc–Wen model. A
generalized Bouc–Wen model was considered in Ref. [19] for pre-
dicting the cyclic response of a T-connection consisting of two
wood members joined by plywood gusset plates, and the para-
metric identification problem was solved by using a DE algorithm.
Recently, Worden and Manson [20] investigated the effectiveness
of a self-adaptive DE algorithm for the parametric identification of
the Bouc–Wen model using simulated noisy data.

In this paper, the focus is on identifying Bouc–Wen parameters
for seismic isolation devices by means of non-classical methods,
a problem which has received very few attention. A recent article
by Sireteanu and co-authors [21] on this topic addressed the GA-
based parametric identification of an extended Bouc–Wen model
for elastomeric bearings. Differently from that paper, the para-
metric identification of seismic isolators is here performed for
the first time by means of PSO and DE. Such techniques have a
simple structure and require few control parameters, whose opti-
mal  values lie within a rather small interval. These characteristics,
together with the numerical robustness, are especially important
for industrial applications. The feasibility of these soft computing
techniques is critically reviewed with reference to experimental
data. In this sense, other significant contributions are concerned
with the experimental protocol and the completeness of the final
results. The examined device was subjected to loading conditions
imposed by standardized qualification tests for seismic isolators
(the current Italian building code [22] is taken into account in this
study). This is to ensure the objectivity of the results with respect
to the current state-of-the-practice about the experimental qual-
ification of seismic isolators. In doing so, this study also benefits
of a larger experimental database than the considered one in pre-
vious researches [21]. Moreover, although identification methods
for nonlinear systems are usually examined by considering the
displacement-force curves only (as in Ref. [21]), this paper also
evaluates the quality of the whole procedure with reference to the
velocity-force curves. This complete analysis turns out to be very
important for assessing the real effectiveness of such techniques
for industrial applications. Final results demonstrate that PSO and
DE can be viable tools for the parametric identification of seismic
isolators, and that the DE algorithm is significantly better than PSO.

2. Parametric identification of seismic isolators

2.1. Hysteresis model for seismic isolators

The seismic isolator is modeled as nonlinear single-degree-of-
freedom system:

mÿ(t) + �(t) = g(t), (1)

where m is the mass, y(t) is the displacement (overdots denote the
time-derivative), �(t) is the restoring force and g(t) is the excita-
tion dynamic load. As usual in nonlinear modeling of isolators [23],
damping is represented by taking into account the inelastic (hys-
teretic) response of the isolators whereas viscous damping is not
included. So doing, by assuming a Bouc–Wen hysteresis model, the
restoring force �(t) is:

�(t) = ˛kiy(t) + (1 − ˛)kiz(t), (2)

where  ̨ = (kf/ki) is the ratio of the post-yield kf to pre-yield ki (elas-
tic) stiffness whereas z(t) is the hysteretic parameter given by the
following nonlinear differential equation:

ż(t) = Aẏ(t) − ˇ|ẏ(t)||z(t)|(�−1)z(t) − �ẏ(t)|z(t)|�. (3)

Parameters  ̌ and � control the shape of hysteretic loops, and do
not have precise physical meaning. For what concerns the parame-
ter �, it controls the sharpness of the transition from initial slope to
the slope of the asymptote. For increasing values of �, the loading
path of a softening hysteresis approaches the ideal bilinear model.

The identification problem can be simplified accounting for
some parameter constraints, i.e. A = 1 in order to remove the intrin-
sic redundancy of the Bouc–Wen model [18]. On  considering the
aforementioned constraint, the Bouc–Wen hysteresis model is fully
described if the parameters kf, ˛, ˇ, � and � are identified (the mass
m is assumed as given parameter).

2.2. Parametric identification problem

The parametric identification of the considered Bouc–Wen
model is formulated as minimization problem:

min  {f (x)}
s.t.

xl ≤ x ≤ xu , (4)

where f : R
n → R  is the objective (or cost) function and x ∈ R

1×n is
the vector which collects the n unknown model parameters (lower-
bounded by xl and upper-bounded by xu).

In this study, the objective function f(x) is defined as a normal-
ized mean-square error between the experimental response and
that predicted using a given parameter estimate x [20], that is:

f (x) = 100

S�2
y

S∑
a=1

(y(ta) − ŷ(ta|x))2, (5)

where ta indicate the sampling instant time (being S the total num-
ber of samples), �2

y is the variance of the measured sequence of
displacements y(ta) and ŷ(ta|x) is the predicted sequence of dis-
placements when the parameter estimate is x = { kf  ̨  ̌ � � }.
The best parameter estimation x* is the global minimum of the
objective function in Eq. (5).

3. Non-classical methods for parametric identification

3.1. Particle swarm optimization algorithm

The ith particle (with i = 1, . . .,  m) at the kth iteration has two
attributes, a velocity kvi = { kvi1 · · · kvij · · · kvin } ∈ R

1×n and a
position kxi = { kxi1 · · · kxij · · · kxin } ∈ R

1×n. In order to pro-
tect the cohesion of the swarm, the absolute value of the velocity kvij

is assumed to be less than a maximum velocity vmax
j

, with vmax =
{ vmax

1 · · · vmax
j

· · · vmax
n }. It is assumed vmax = �(xu − xl)/��,

with � = 0.50 [13]. The internal time variable ��  = 1 is introduced
to provide a physically consistent formalism. The initial set of can-
didate solutions 0xi is obtained by generating m pseudo-random
samples within the assigned search space. Similarly, the particle’s
velocities 0vi are obtained by generating m pseudo-random sam-
ples between −vmax and vmax. When k ≥ 1, the ith particle velocity
kvi and the ith particle position kxi are computed as follows:

kvi = kω
(k−1)

vi + kc1
kr1i × (kx

Pb
i − (k−1)xi) + kc2

kr2i × (kx
Gb
i − (k−1)xi), (6a)

kxi = (k−1)xi + ��kvi. (6b)
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