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A B S T R A C T

The rank-deficiency and subspace leakage caused by multipath effect are the main factors that lead to perfor-
mance breakdown of direction of arrival (DOA) estimation in low-altitude environment. In this paper, we
propose an orthogonal projection method based on signal subspace to overcome the negative effects of multi-
path. First, the signal covariance matrix is recovered to full-rank by forward and backward spatial smoothing
(FBSS). Then, based on the least square technique, the signal subspace is used to establish the orthogonal
projection matrix. Thereby the cross covariance matrices of signal and noise parts can be estimated and
eliminated to modify the sample covariance matrix. Compared with the conventional methods that only dispose
rank-deficiency, the proposed method has better performances in low-altitude environment. Besides, compared
with the former orthogonal projection method based on steering matrix, this method reduces the computational
complexity without iterative scheme. These conclusions are verified by simulations.

1. Introduction

The multipath effect (including specular reflection and diffuse re-
flection) in low-altitude environment will seriously degrade the per-
formance of conventional direction of arrival (DOA) estimation algo-
rithms such as multiple signal classification (MUSIC) [1] and estimation
signal parameters via rotational invariance technique (ESPRIT) [2]. The
specular reflection will lead to rank-deficiency and some directions may
lose [3]. The diffuse reflection signals will be received as noise, thus the
noise will be correlated with target signals to some extent. This will lead
to the so-called subspace leakage problem, which means part of the true
signal subspace resides in the sample noise subspace (and vice versa)
[4]. Many methods have been proposed to solve the rank-deficiency
problem from different aspects. There are methods such as forward and
backward spatial smoothing (FBSS) [5], oblique projection [6] to re-
cover the covariance matrix to full-rank. The [7] and [8] both adopt
improved ML method to avoid the rank-deficiency problem. The [9]
uses the spatial diversity of MIMO radar to avoid the targets glint
caused by multipath. Based on sparse signal reconstruction method,
[10] and [11] overcome the rank-deficiency problem without esti-
mating the covariance matrixes. But the study of subspace leakage
comparatively attracts less attention. To solve this problem, Steinwandt
directly models leakage of noise subspace into signal subspace and then
estimates the corresponding perturbation matrix [12]. [13] proposes an
orthogonal projection method based on array steering matrix, however

the DOA estimation procedure has to be repeated and the computa-
tional complexity is large.

In this paper, we propose a novel orthogonal projection method to
improve the DOA estimation performance in low-altitude environment.
The signal subspace, instead of the steering matrix, is used to establish
the orthogonal projection matrix. Compared with the method of [13],
the proposed method can reach the same accuracy with smaller com-
putational complexity. The notations of ∗(·) ,(·)T and (·)H denote the
transpose, conjugation and the conjugation-transpose of the matrixes,
respectively.

2. Signal model in low-altitude environment

The array geometry model in low-altitude environment is shown in
Fig. 1.

Consider an uniform linear array (ULA) withM sensors, whose inter-
element space is half-wavelength. Far field narrowband signals
impinge on this array from the directions θk ( = ⋯k K1,2, , ).

= ⋯s t s t s t s t( ) [ ( ), ( ), , ( )]K1 2
T denotes the uncorrelated narrowband signal

vector. The ULA receives both the direct and reflected signals. The
steering matrix of the array is = + ⋯ +A a a a a[ , , ]d r dK rK1 1 , and:

= ⋯− − −[ ]a θ( ) 1, e , ,edk dk
π θ π M θj sin j ( 1)sin Tdk dk (1)

=a aθ δ θ( ) ( )rk rk k dk rk (2)
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where = − =θ θ θdk rk k, δk is the multipath reflection coefficient. Thus:

= + − ⋯ + −A a a a aθ δ θ θ δ θ[ ( ) ( ), , ( ) ( )]K K K1 1 1 (3)

The output of receiver can be represented as:

= + = +y As n Bx nt t t t t( ) ( ) ( ) ( ) ( ) (4)

where n t( ) is complex colored noise, = − ⋯ − ×B a a a aθ θ θ θ[ ( ), ( ), , ( ), ( )]K K N K1 1 2 ,
and =x t( ) ⋯ ×s t δ s t s t δ s t[ ( ), ( ), , ( ), ( )]K K K K1 1 1 2 1

T . The covariance of y t( ) is:

= = +R y y BR B n nE t t t t[ ( ) ( )] E[ ( ) ( )]x
H H H (5)

Due to the multipath effect, x t( ) contains coherent signals and the
Rx in (5) is a rank-deficient matrix. If R is directly used for eigen de-
composition, some angles will lose. Therefore, the methods such as
FBSS-MUSIC, oblique projection can be used to solve the rank-defi-
ciency problem. Taking FBSS as an example, we can divide y t( ) into L
forward overlapping vectors y t( )fl and L backward overlapping vectors
y t( ),bl and each of them contains m antennas:

= = +−y F y B D x nt t t t( ) ( ) ( ) ( )fl l m
l

l
1 (6)

= ∗y F Jyt t( ) ( )bl l (7)

where = × − × − − +F I[0 0 ]l m l m m M m l( 1) ( 1) , = ⋯l L1,2, , . Bm is the first m rows
of B and is an ×m m exchange matrix with 1 on its anti-diagonal and 0
elsewhere. Besides:

= ⋯− −D diag[e ,e , ,e ,e ]π θ π θ π θ π θj sin j sin j sin j sin1 1 K K (8)

The − +L l( 1) th backward vector can be expressed by the l th for-
ward vector as:

=− +
∗y Jyt t( ) ( )b L l fl( 1) (9)

Suppose the number of snapshots is N. The covariance of y t( )fl and

− +y t( )b L l( 1) can be estimated respectively:

̂ ̂ ̂ ̂ ̂∑= = + + +
=

− −R y y B D R B D R R R
N

t t1 [ ( ) ( )] ( )fl
t

N

fl fl m
l

x m
l fl fl fl

1

H 1 1 H
n sn ns

(10)

̂

̂ ̂ ̂ ̂

∑=

= + + +

− +
=

− + − +

− − ∗

R y y

J B D R B D R R R J

N
t t1 [ ( ) ( )]

[ ( ) ]

b L l
t

N

b L l b L l

m
l

x m
l fl fl fl

( 1)
1

( 1) ( 1)
H

1 1 H
n sn ns (11)

Hence, the total smoothing matrix can be expressed as:

̂ ̂∑ ∑= = +
= =

∗R R R J R J
L L
1 1

2
[ ( ) ]

l

L

l
l

L

fl fl
1 1 (12)

The amount of coherent sources that can be identified depends on
the method that is used to solve the rank-deficiency problem. In this
paper, we use FBSS to solve the problem. For an array with M elements,
the maximum coherent sources that the proposed algorithm can iden-
tify is M2 /3, which has been proved in literature [5].

3. Orthogonal projection methods to solve subspace leakage

3.1. Orthogonal projection method based on steering matrix

The signal and noise are partially correlated, and the actual number
of snapshots is finite. Thus the ̂R

fl
sn and ̂R

fl
ns ( = ⋯l L1,2, , ) may have

significant values, which may decrease the DOA estimation perfor-
mance largely. In order to remove these terms, we employ the least
square technique with (6) to estimate the source signal x as:

̂ ̂ ̂ ̂= − − − −x B D B D B D y t[( ) ] ( ) ( )m
l

m
l

m
l

fl
1 H 1 1 1 H (13)

where ̂Bm is the estimator of Bm and the l th forward noise vector can be
estimated as:

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂= − = − =− − ⊥
n y B D x y B B B B y P yt t t t t( ) ( ) ( ) ( ) ( ) ( )Bfl fl m

l
fl m m m m fl fl

1 H 1 H
m

(14)

where ̂ ̂= −
⊥

P I PB Bmm m, and ̂ ̂ ̂ ̂ ̂= −P B B B B( )B m m m m
H 1 H

m . Therefore ̂R
fl

sn and
̂R
fl

ns can be estimated as:

̂ ̂ ̂ ̂
̂ ̂ ̂ ̂

⎧
⎨
⎩

=

=

⊥

⊥

R P R P

R P R P
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B B

fl
fl

fl
fl

sn
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m m

m m (15)

In reality, ̂⊥PBm and ̂PBm cannot be known at first, so [13] adopts a

two-step scheme to estimate ̂⊥PBm and ̂PBm. In the first step, the DOAs are

estimated without eliminating ̂R
fl

sn and ̂R
fl

ns. In the second step, the

steering matrix ̂Bm, together with ̂⊥PBm and ̂PBm, is obtained using the

estimated DOAs, so that the ̂R
fl

sn and ̂R
fl

ns can be estimated and elimi-
nated. Therefore, the DOAs can be estimated more precisely.

3.2. Improved orthogonal projection method based on signal subspace

The method based on steering matrix has to estimate the DOAs in
ahead, which brings extra computational complexity to establish space
spectrum and search peaks. To reduce the computational complexity,
we propose a novel orthogonal projection method based on signal
subspace. The eigen decomposition of R is:

̂ ̂ ̂ ̂ ̂ ̂= +R U U U UΣ Σs s s
H

n n n
H

(16)

The diagonal matrix ̂Σs and ̂Σn are consisted of the largest K ei-
genvalues and the rest m-K eigenvalues respectively. ̂Us and ̂Un are the
signal subspace and noise subspace respectively. The space spanned by
the vectors of ̂Us and the space spanned by the vectors of Bm are the
same, namely:

⋯ = ⋯u u u b b bspan{ , , , } span{ , , , }K K1 2 1 2 (17)

There exists a ×K K invertible matrix V which satisfies the equa-
tion of ̂ =U V Bms , then the following equations can be obtained:

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂
̂

= = =

=
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1

s
H

s s
H

s
1

s
H

s

m

(18)

So ̂PBm can be replaced with ̂Ps to perform the orthogonal projection
in (15):
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Fig. 1. The array geometry model in low-altitude environment.
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