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A covariance matrix shrinkage method is proposed to make an improvement of the direction of arrival
(DOA) estimation under a uniform linear array in a scenario where the number of sensors is large and
the sample size is relatively small. The main contribution is that we provide a shrinkage target with
Toeplitz structure and deduce a closed-form estimation of the shrinkage coefficient. The closed-form
and the expectation of the shrinkage coefficient estimate are calculated based on the unbiased and con-
sistent estimates of the trace and moments of a Wishart distributed covariance matrix. The statistical
property of the shrinkage coefficient estimate is discussed through theoretical analysis and simulations,
which demonstrate the shrinkage coefficient estimate can ensure that the proposed covariance matrix
estimate is a good compromise between the sample covariance matrix (SCM) and the target. The root-
mean-square-error (RMSE) simulations of DOA estimation show that the proposed method can improve
the multiple signal classification (MUSIC) DOA estimation performance in the case of low signal-to-noise
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ratio (SNR) with small sample size, and also can provide a satisfactory performance at high SNR.

© 2017 Published by Elsevier GmbH.

1. Introduction

Direction-of-arrival (DOA) estimation of signal sources is a fun-
damental topic in signal processing and widely applied in commu-
nications, radar and sonar, etc. [1,2]. The subspace-based DOA
estimation methods including multiple signal classification
(MUSIC) algorithm and the modified versions are referred to as
super-resolution techniques in the case of high signal-to-noise
ratio (SNR) with sufficient samples, which offer a good compro-
mise between resolution and computational complexity [3,4]. They
obtain the signal and noise subspaces through the eigenvalue
decomposition of the sample covariance matrix (SCM). The SCM
in these methods is usually estimated by the maximum likelihood
estimation, which is a well estimation when the sample size is
much lager than the dimension. However, in certain scenarios,
the number of available samples N may be restricted and is on
the same order of magnitude as the number of sensors M. For
example, when signals are short-time stationary processes, or an
array system contains a large number of sensors in the multiple-
input multiple-out (MIMO) radar system. In these cases, the SCM
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is not a good estimation of the true covariance matrix any more,
which leads to the subspace-based DOA estimation methods per-
form poorly [5].

The general asymptotic situation, where M,N — oo with
M/N — c € (0,), can provide a more accurate description for
the practical scenario in which M and N are the finite with compa-
rable values [6]. X. Mestre analyzed the asymptotic behavior of the
eigenvalues and eigenvectors of the SCM by Stieltjes transform,
and proved that the traditional sample estimates are inconsistent
and indicate a poor performance in the general asymptotic situa-
tion [7]. His team modified the subspace algorithms for DOA esti-
mation (their methods are named as G-MUSIC and G-SSMUSIC)
based on their improved estimation of the eigenvalues and eigen-
vectors [8]. Compared with the conventional subspace methods, X.
Mestre et al. focused on providing new estimations of the quadra-
tic form of the eigenvectors and improving the resolution of DOA
estimation by weighting the sample eigenvector projection matri-
ces. From another perspective, it will be an effective way to obtain
good DOA estimates via improving the estimation of the covari-
ance matrix when N is relatively small compared with M.

Covariance matrix shrinkage estimation algorithms are suit-
able for high dimensional problems with relatively few samples
(large M and small N), and the estimate realizes a good compro-
mise between the SCM and a well-conditioned matrix (the
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shrinkage target) [9,10]. The researches about shrinkage methods
focused on finding a proper shrinkage target, and a shrinkage
coefficient which should be optimal and easy to calculate.
Recently, Y. Chen et al. addressed a high dimensional covariance
matrix shrinkage method in the sense of minimum mean-
squared-error (MSE) when the observations are Gaussian dis-
tributed [11] and elliptical distributed [12]. X. chen and Z. ].
Wang introduced a shrinkage-to-tapering approach which shrinks
the SCM to the tapered version by choosing some diagonals of the
SCM [13]. T. Lancewicki and M. Aladjem considered a multi-
target shrinkage algorithm which exploits the Ledoit-Wolf (LW)
method with several targets simultaneously [14]. Most of these
methods assume that the true covariance matrix likes an identity
matrix, a diagonal matrix, or a diagonally dominant matrix with
smoothing parameters [13-15]. Under a general assumption of
the DOA estimation model, the true covariance matrix is a com-
plex Toeplitz and Hermitian matrix with coherent entries under
the uniform linear array (ULA) or other fixed structure matrices
depending on the geometry of the array. Among the above men-
tioned methods, the diagonal matrix structure targets adopt the
entries in the main diagonal of the SCM and do not contain any
information about the DOAs, and the others drop some DOA
information from the minor diagonals of the SCM. Hence, the cur-
rent covariance matrix shrinkage methods are not suitable for the
DOA estimation model. Because the shrinkage targets of these
methods are not well-conditional matrices compared with the
covariance matrix of the DOA estimation model.

The Toeplitz rectification is a way to improve the estimation of
a covariance matrix with Toeplitz structure, which obtains a recti-
fied SCM by averaging the entries on the diagonals of the SCM
[16,17]. The R-MUSIC improved the DOA estimation of MUSIC by
replacing the SCM with the Toeplitz rectified SCM. P. Vallet and
P. Loubaton proved that the R-MUSIC suffers a “saturation phe-
nomenon” that the MSE of DOA estimates will not decrease with
the increase of signal-to-noise ratio (SNR) when the SNR overs a
certain value [17]. Although the rectified SCM with the flaw of “sat-
uration phenomenon”, it is suitable as a shrinkage target due to its
Toeplitz structure. In this paper, we consider the rectified SCM as
the shrinkage target with the advantage that it contains all DOA
information and provides a good DOA estimation performance at
low SNR. Utilizing the unbiased and consistent estimates of the
trace and moments of the Wishart distributed covariance matrix,
the estimation of the shrinkage coefficient is derived as a closed
form. The proposed shrinkage coefficient is inversely proportional
to the SNR and tends to a stable value with the increase of the
number of samples, which means when the SNR is high, the SCM
accounts for a major share in the new covariance matrix estimate
and the “saturation phenomenon” from the rectified SCM will be
mitigated. On the contrary, the rectified SCM will play a leading
role and bring a good DOA estimation performance when the
SNR is low and the sample size is small.

The rest of the paper is organized as follows. The signal model,
the MUSIC and G-MUSIC algorithms are presented in Section 2. The
proposed covariance matrix shrinkage estimation method, the
application in the MUSIC and the statistical analysis of the shrink-
age coefficient estimate are introduced in Section 3. Numerical
simulation results are shown in Section 4. The principal conclusion
is summarized in Section 5.

Notation. In the following, we depict vectors in lowercase bold-
face letters and matrices in uppercase boldface. The transpose

operator and conjugate transpose operator are denoted as (-)" and

()", respectively. Tr(-) , E{-} and | - ||z are the trace, the mathe-
matical expectation and the Frobenius norm, respectively.

2. The signal model, MUSIC and G-MUSIC algorithms
2.1. The signal model

In consideration of a ULA of M sensors with half-wavelength
element separation receiving K narrow-band spatially incoherent
signals from directions {6;, ..., 0k}, at discrete time n, the received
sample vector y(n) € CY! is usually modeled as

K
y(m) = > a(@)sc(n) + wn)
= (1)

= As(n) + w(n),

where A = [a(0y),...,a(0k)] € C¥¥ is the steering matrix with

. . P . . T
unit norm steering vectors a(0y) = (1, emM%, .. emM-D)sin6] "

k=1,...,K, and s(n)=[s;(n),...,sg(n)]" € C*' contains source
signals, and w(n) e C**! is the additive noise. We assume there
are N samples collected in the sample matrix

Yy =ASy + Wy, (2)

where Yy = [y(1),...y(N)],Sy = [s(1),...s(N)], and Wy = [w(1),...
w(N)]. We consider common assumptions of the model as
following.

A 1. The signals are independent with mean E{si(n)} =0,
k=1,...,K and covariance matrix E{s(n)s"(n)} £ Ps.

A 2. w(n) is the complex white Gaussian noise with zero mean and
unknown power o2, i.e. E{w(n)w'(n)} = ¢%Iy;, where Iy is an
M x M identity matrix. The noise is independent of the signals.

A 3. The number of sources K is known and satisfies K < min(M, N).
Under the assumptions, the true covariance matrix of the obser-
vation vector y(n) is

R = E{y(n)y"(n)} = APA" + 0*Iy. 3)

We denote the eigenvalues of R as 4; < 1 < --- < Ay with the cor-
responding eigenvectors ey, ..., ey. The sample covariance matrix
(SCM) § = 1YyYHis the classical maximum likelihood estimation
of R, but in this paper we consider an unbiased estimate

s—— 1 vyt (4)

N-1 N

The eigenvalues and eigenvectors of § are denoted as
J1 < Ja<---<Jiyand e,..., ey, respectively, also called as sample
eigenvalues and sample eigenvectors. Consequently, the DOA esti-
mation is to infer the parameters 0,k =1,...,K from the noisy
observation matrix Yy.

2.2. The MUSIC and G-MUSIC algorithms

Under the Assumptions A1-A3, the MUSIC algorithm is based

on the fact that 6,,...,0¢ are the zeros of the pseudo-spectrum
function
Muwsic(0) = @™ (0)Ma(0), 5)

where I = 3" Xe, e!l is the orthogonal projection matrix onto the
kernel of AP,A" | and also called as “noise subspace projection
matrix” [3]. The unknown matrix IT is usually obtained by comput-
ing the eigenvectors associated with the M — K smallest eigenvalues

of the SCM, i.e. Tsqy = S-M¥e,e!. The original MUSIC estimates
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