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a b s t r a c t

In this paper, an improved encoding scheme for online fountain codes is proposed with the joint opti-
mization of variable node degree and check node degree is proposed. The coding scheme can be divided
into the build-up phase and the completion phase. In the build-up phase, left degree distribution is
exploited to guarantee optimal performance phase by modifying the traditional coding scheme of choos-
ing input symbols uniformly at random. A memory-based selecting of the source symbols is employed to
decrease the number of connected components, which can thus produce the dimension increasement of
the linear subspace of a decoding graph constructed in the build-up phase. The upper bound on coding
overhead is also derived from the analysis of random graph theory. Compared with conventional online
fountain codes, it can be seen from the simulation results that the proposed scheme can provide signif-
icant performance improvement with respect to both coding overhead and feedback cost. Moreover, the
lower encoding/decoding complexities may make the proposed scheme more practical in energy-
constrained applications such as distributed storage.

� 2017 Elsevier GmbH. All rights reserved.

1. Introduction

Digital fountain codes [1], also called rateless codes, were pro-
posed by Byers et al. in 1998 [2] for reliable communications over
lossy networks. Different from conventional fixed-rate codes [3–4],
digital fountain codes can adapt the coding rate according to the
channel state information. Once a sufficient number of encoded
packets which in aggregate is only slightly longer in length than
the given message block have been received at the decoder, the
source data can be recovered. Luby Transform (LT) codes [5] and
Raptor codes [6] are two efficient and practical realizations of rate-
less codes. As a new class of forward error correction (FEC) codes,
rateless codes which can ensure reliable delivery of files with
almost no feedback, have been studied in practical systems such
as wireless sensor network [7–8], three dimensional video applica-
tions [9] and image transmission applications [10].

Conventional fountain codes that are described above suffer
from high decoding latency especially when the code blocks are
long [11]. In addition, it has been confirmed that not taking the
current state of the decoding into consideration can only achieve
suboptimal decoding performance [12–14]. Several researches do

consider the adjustment of the fixed rateless coding strategy
according to the decoding state. In [15], two different types of feed-
back were utilized to improve the decoding performance for short
data-block length LT codes. Compared with existing works, the
method of [15] requires lower coding redundancy but suffers from
higher coding complexity. In [16], feedback-based LT codes with
nonuniform symbol selection distributions were designed to
achieve a high intermediate symbols recovery rate.

In [17], Cassuto et al. proposed a new class of rateless codes
named online fountain codes. The encoding process can be divided
into the build-up phase and the completion phase. In the build-up
phase, a uni-partite graph is constructed by coded symbols with
degrees not bigger than 2. In the completion phase, the decoding
current state represented by the uni-partite graph is fed back to
the transmitter. Then the optimal coding strategy is set to increase
the linear subspace dimension of the uni-partite graph based upon
this decoding state information. The authors proposed a simplified
online fountain coding scheme which was simpler for both imple-
mentation and analysis. Compared with the previously known
codes [18,19], their work can produce a dramatic improvement
on the overhead performance. However, the optimal coding strat-
egy is only set in the completion phase of the simplified online
fountain codes. When coded symbols with degree 2 are generated
in the build-up phase, the authors did not consider the optimal
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way to increase the linear subspace dimension. As a result, the
total number of the components is large at the end of the build-
up phase, which led to a degradation of performance with respect
to coding overhead and feedback cost.

In this work, our focus is on the build-up phase optimization.
First, based on the analysis of random graph, we derived the pro-
portionality relation between the number of coded symbols
required in the completion phase and the number of connected
components constructed in the build-up phase. Thus less coded
symbols required to complete the decoding can be achieved if we
reduce the connected component number in the build-up phase.
Moreover, considering that the size-1 components account for a
large portion of the total connected components, we can reduce
the coding overhead if the components with size 1 are merged into
larger components.

Based on the above analysis, a new online fountain coding
scheme is designed. The work in this paper contains contributions
in the following respects. First, the proposed optimization method
fulfilled with the exploitation of left degree distribution (LDD)
enables the increase of the linear subspace dimension. Thus, the
optimal performance can also be guaranteed in the build-up phase.
On the other hand the proposed generalization of rateless codes
gives dramatic improvements in terms of coding overhead and
coding/decoding complexities over conventional online fountain
codes [15,17]. This might be very important for portable applica-
tions such as distributed storage. More XOR operations may
exhaust the energy of the energy-constrained storage nodes and
reduce the life cycle of the storage system. Finally, performance
of the proposed method is compared to other rateless codes with
online property through both analysis and simulations.

The remainder of this paper is organized as follows: Section 2
describes the background of online fountain codes. The detail of
the proposed scheme and the analysis of upper bound on coding
redundancy are described in Section 3. Numerical simulations are
performed in Section 4. Finally, we conclude the paper in Section 5.

2. Preliminaries

In [17], the authors address the problem of defining an simpli-
fied online fountain code. In this section, we briefly review the sim-
plified online fountain codes introduced by Cassuto.

If the optimal coding strategy can be determined at the trans-
mitter for any given instantaneous decoding state, then this foun-
tain code can be defined as online fountain code. Different from the
way of representing the decoding state by the canonical bi-partite
graph, the decoding state is denoted by a uni-partite graph. As
shown in Fig. 1, the source symbols and the coded symbols are
denoted by the circle nodes and the square nodes respectively.
The following coded symbols can be depicted as a bi-partite graph
detailed in Fig. 1.

The code information can be denoted as a uni-partite graph if
the degrees of all the code symbols in the graph are not bigger than

2. The corresponding uni-partite graph which can describe the
above coded symbols is depicted in Fig. 2. Connect two source
nodes with an edge if the corresponding two source nodes are
the ‘‘neighbour” nodes of an coded node. A node linked to a coded
symbol with degree 1 is coloured black as it can be decoded at the
receiver. Otherwise, colour it in white. No edges are connected to
the black nodes. For example, s6 is coloured black as the degree
of the code symbol c5 is 1.

A connected component of a graph is a sub-graph in which any
two vertices are connected by edges, and which is not connected to
any other vertices in the super-graph. A vertex with no incident
edges is itself a connected component. The number of vertices in
a component is called the size of the connected component.

Assume that the decoding graph constructed at a given instant
contains V nodes which have already been coloured black and Vi

size-i connected components. The decoding state then can be
denoted by a component enumerator polynomial:

VðxÞ ¼ V þ
Xk

i¼1

Vixi ð1Þ

The number of components is

#component ¼
Xk

i¼1

Vi ¼ Vð1Þ � V ð2Þ

The dimension of linear subspace G established among the coded
symbols can be derived from the number of connected components
and is given by [17]:

dimðGÞ ¼ k�#componentðgÞ ð3Þ
Given the decoding state denoted by the component enumera-

tor polynomial, the encoder of the online fountain codes seeks for
the maximized elimination probability of a connected component
in the graph. Thus by (3) the dimension increases by one. Such
increase in dimension can be obtained if a newly degree-d coded
symbol can give rise to either of the following two cases:

� Case 1: One single white source symbol and d� 1 black source
symbols are selected to generate a newly received symbol.

� Case 2: Two white source symbols and d� 2 black source sym-
bols are selected to generate a newly received symbol.

The simplified online fountain code is defined as follows:

1 1 2c s s , 2 2 3c s s , 3 1 3c s s , 4 4 5c s s , 5 6c s , 6 7c s .

1s 2s 3s 4s 5s 6s 7s 8s

1c 2c 3c 4c 5c 6c

Fig. 1. A bi-partite graph for fountain codes.
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Fig. 2. A uni-partite graph for fountain codes.
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