
Applied Soft Computing 23 (2014) 91–103

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

A hybrid optimization approach to conformance testing of finite
automata

Krzysztof Zaniewskia,b,∗, Witold Pedrycza,c,d

a Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
b Department of Deal Life Cycle, DONG Energy, Warsaw, Poland
c Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6R 2G7 AB, Canada
d Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 29 December 2012
Received in revised form 17 May 2014
Accepted 19 May 2014
Available online 11 June 2014

Keywords:
Metaheuristic algorithms
Hybrid approach
Genetic Algorithm
Simulated Annealing
Finite state machine
State verification

a b s t r a c t

Unique Input–Output sequences (UIOs) are quite commonly used in conformance testing. Unfortunately
finding UIOs of minimal length is an NP hard problem. This study presents a hybrid approach to gener-
ate UIOs automatically on a basis of the finite state machine (FSM) specification. The proposed hybrid
approach harnesses the benefits of hill climbing (Greedy search) and heuristic algorithm. Hill climbing,
which exploits domain knowledge, is capable of quickly generating good result however it may get stuck
in local minimum. To overcome the problem we used a set of parameters called the seed, which allows the
algorithm to generate different results for a different seed. The hill climbing generates solutions implied
by the seed while the Genetic Algorithm is used as the seed generator. We compared the hybrid approach
with Genetic Algorithm, Simulated Annealing, Greedy Algorithm, and Random Search. The experimen-
tal evaluation shows that the proposed hybrid approach outperforms other methods. More specifically,
we showed that Genetic Algorithm and Simulated Annealing exhibit similar performance while both of
them outperform Greedy Algorithm. Finally, we generalize the proposed hybrid approach to seed-driven
hybrid architectures and elaborate on how it can be adopted to a broad range of optimization problems.

© 2014 Elsevier B.V. All rights reserved.

Introduction

Testing has become more complex in the recent years given a
continuously growing size and complexity of modern systems. Con-
formance testing is applied to verify if a designed (implemented)
automata meets a series of specified requirements. Conformance
testing involves a model of the finite state machine, which captures
the requirements of the system to be designed [1–3]. An imple-
mented version of a finite state machine is treated as a black box
and compared with its specification. To verify if the implemented
machine complies with its requirements, we generate an input for
the machine and observe the resulting outputs. With this regard,
various testing methods were proposed, say U-method [4,5], W-
method [5,6], T-method [5,7], and D-method [5,8]. Each of these
methods comes with some advantages however there are some
limitations. The T-method is unable to detect state fault [5]. The
W-method generates the longest test sequences [9]. The D-method

∗ Corresponding author at: Systems Research Institute, Polish Academy of Sci-
ences, Warsaw, Poland. Tel.: +48 501216097.

E-mail address: krzysztof.zaniewski@gmail.com (K. Zaniewski).

generates a distinguishing sequence, which may not exist for every
machine [5,9]. In fact, only 17% of FSMs have a distinguishing
sequence [9].

In this study, we focus on the U-method because this method
is able to detect state fault [5], produce the shortest test length
[9]. Furthermore we are able to use the U-method when a distin-
guishing sequence does not exist for the given FSM. The U-method
generates Unique Input–Output sequences (UIOs) of minimal
length for each machine state to detect state fault and UIOs exists
for each state on 99% of the FSM [9]. Let us recall that the Unique
Input–Output (UIO) sequence is an input sequence, which once
executed on the selected state produces a unique output. How-
ever generating the shortest Unique Input–Output sequences is an
NP-hard problem [10] and because of this, various metaheuristic
techniques may be applied. Such techniques like Genetic Algo-
rithms [11,12], Simulated Annealing [13,14], 1 + 1 [15], Particle
Swarm Optimization [16,17], Artificial Bee Colony [18,19] have
been shown to be effective in solving NP-hard problems.

The main objective of this study is to propose, analyze, and
experiment with the hybrid approach to generate minimal UIO
sequences and to quantify its effectiveness. The results obtained
when using the proposed approach are compared with those

http://dx.doi.org/10.1016/j.asoc.2014.05.018
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.05.018
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.05.018&domain=pdf
mailto:krzysztof.zaniewski@gmail.com
dx.doi.org/10.1016/j.asoc.2014.05.018

92 K. Zaniewski, W. Pedrycz / Applied Soft Computing 23 (2014) 91–103

Terms and acronyms

FSM finite state machine
GA Genetic Algorithm
SA Simulated Annealing
UIO Unique Input–Output
UIOs Unique Input–Output sequences

produced by a generic version of the Genetic Algorithm, Simulated
Annealing, Greedy Search, and Random Search. A detailed study is
provided on how the approaches are affected by the topology and
size of the finite state machine. We also show how these algorithms
perform over time.

In this paper, we propose a new hybrid approach called Genetic-
Hill Climbing. We show that this approach leads to better results
in comparison with those produced by some other techniques.
The hybrid approach is composed of a hill climbing algorithm,
which generates results based on knowledge about the problem
and machine architecture. The hill climbing algorithm without any
input parameters generates the same sequences every time. To
improve the hill climbing we use a set of parameters, which guides
the process of optimization. The set of parameters is referred to as
a seed and the Genetic Algorithm is used as the seed generator.

This paper is structured into seven sections. We begin with offer-
ing some background by looking at the current state of affair in the
field of finite state machine conformance testing. Section “The pro-
posed hybrid algorithm” gives details on the hybrid approach and
generalizes the proposed approach to seed-driven hybrid architec-
tures. In Section “Experiments”, a concise description of the testing
environment and algorithm parameters selection is followed by
the results of experiments and their detailed analysis. Following
section provides a real-world case study. Finally, we draw the con-
clusions and identify future research direction.

Some preliminaries

In this section, we present some prerequisites and present a
current status on conformance testing of finite state machines.

Finite state machine

The finite state machine (finite automata) is an abstract model,
which describes behavior of dynamic system based on a state trans-
formation table. Finite state machines are in common usage. They
are used for describing logical circuits [20], network protocols [21]
and computer applications [3].

Formally speaking, a State Machine is described in the form (I,
O, S, Ss, f, g), where I: a finite non empty set of input objects; I = {I1,
I2, I3 . . . , Ia}, O: a finite non empty set of output objects; O = {O1, O2,
O3 . . . , Oo}, S: a finite non empty set of states; S = {S1, S2, S3 . . . , Sn},
a: a number of inputs in the fsm, o: a number of outputs in the fsm,
n: a number of states in the fsm, f: a state transformation function;
f : S × I → S, g: an output function; g : S × I → O, Ss: a start state; Ss ∈ S.

There are two types of finite automata, namely Mealy machines
[1] and Moore machines [2].

In this paper, we consider Mealy machines because the
machines of this type produce a lower number of states than the
equivalent Moore machines. In the Mealy automata, each state has
a list of actions, which may be executed. When being in a certain
state and provided with a certain input, the machine moves to the
next state (identified in the transformation table) and generate a
certain output. An example of the finite Mealy state machine is
shown in Fig. 1. For example, if we start from state S1 and run a

Fig. 1. An example of Mealy’s machine.

sequence of actions ‘aa’, the machine moves to state S3 through
state S2 and produce the output sequence ‘21’.

Conformance testing of finite state machines

Conformance testing of a finite state machine requires com-
paring the machine specification with its implementation. We
encounter the following types of faults [5,10]:

• Output fault
• State fault

An output error arises when the output coming from a test suite
disagrees with the machine specification. Whereas a state error
appears when after test execution the finite state machine is not in
an expected state. The output error can be discovered easily by com-
paring an actual test output with an expected test output derived
from the specification. The basic method for finite state machine
testing is the Transition Tour (T-method) [5,7]. When applying the
T-method, we move through each transition at least once and check
the output. Finding the shortest sequence, which moves through
all transitions is also known as The Chinese Postman Problem [22]
and an effective solution for the problem exists [22]. However the
T-method detects only the output error. The state error can be
discovered after each transition test execution by checking if the
machine is in a correct state. But this is not as easy as it looks.
To check if a machine is in a proper state we need to run a special
sequence, which verifies the state. There are three state verification
methods:

• U-method or unique input/output sequence (UIO) [4,5]
• D-method or distinguishing sequence (DS) [5,8]
• W-method or characterization set (W-set) [5,6]

Let us briefly highlight the essence of these three methods.

D-method
The method creates a sequence called the distinguishing

sequence, which generates a different output for each state. For
example, the distinguishing sequence ‘bb’ for the graph in Fig. 1
produces the following outputs:

• For state S1 – 12
• For state S2 – 22
• For state S3 – 11

Download English Version:

https://daneshyari.com/en/article/495396

Download Persian Version:

https://daneshyari.com/article/495396

Daneshyari.com

https://daneshyari.com/en/article/495396
https://daneshyari.com/article/495396
https://daneshyari.com

