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a  b  s  t  r  a  c  t

This research  addresses  a single  machine  scheduling  problem  with  uncertain  processing  times  and
sequence-dependent  setup  times  represented  by  intervals.  Our objective  is to  obtain  a  robust  sched-
ule  with  the  minimum  absolute  deviation  from  the  optimal  makespan  in the  worst-case  scenario.  The
problem  is  reformulated  as a robust  traveling  salesman  problem  (RTSP),  whereby  a  property  is  utilized
to efficiently  identify  worst-case  scenarios.  A  local  search-based  heuristic  that  incorporates  this  property
is proposed  to solve  the RTSP,  along  with  a simulated  annealing-based  implementation.  The  effective-
ness  and  efficiency  of the  proposed  heuristic  are  compared  to those  of  an exact  solution  method  in  the
literature.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Uncertainty is a very practical concern for scheduling in various
manufacturing and service industries, because many of the param-
eters associated with scheduling are often subject to unexpected
deviations that prevent the execution of schedules exactly as they
are developed. For instance, incomplete/inaccurate job information
or unexpected/unavoidable stochastic variability in raw material
availability and resource reliability gives rise to uncertainty which
inevitably leads to infeasibilities and production/service distur-
bances. This research concerns scheduling jobs on a single machine
with uncertain job processing times and sequence-dependent
setup times (SDSTs).

To deal with uncertain job data in scheduling problems, a
number of previous studies have developed different methods to
generate robust schedules that minimize impacts of data uncer-
tainty on production performances [1,2]. Stochastic programming
(SP) [3] is among the classical approaches to tackle job data
uncertainty in single machine scheduling problems. SP techniques
assume the variations of job attributes (e.g., processing times,
release data, and due dates) follow given distributions; actual val-
ues are realized only after a scheduling decision has been made.
Since the outcome of a scheduling decision depends on the specific
realization of uncertain job parameters, SP models typically aim at
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optimizing expected (or average) system performance, such as flow
time [4], weighted number of early and tardy jobs [5], maximum
lateness [6], and number of tardy jobs [7].

In the cases when exact probability distributions of random job
data are not available (thus SP techniques cannot be applied), an
interval representation of uncertain processing times and SDSTs
may  be more appropriate. For example, in the production line for
a new electronic product where jobs are processed for the first
time, not much information about the probability distribution of
processing and setup times is available. Nevertheless, lower and
upper bounds of processing times and SDSTs could be (relatively)
easily estimated based on past experiences from similar prod-
ucts and should be utilized in developing production schedules.
Lai et al. [8] and Lai and Sotskov [9] dealt with the scheduling
problem with interval or bounded processing times. Some other
researchers focused on flowshop [10], jobshop [11], and parallel
machine [12] scheduling problems with interval processing times
and setup times. Although a number of studies addressed flow-
shop and jobshop scheduling problems with bounded processing
times and setup times, the single machine scheduling problem with
interval-represented processing time and SDSTs received very little
attention.

Robust optimization (RO) is another class of approaches of deal-
ing with single machine scheduling with uncertain job data [13,14].
This class of approaches uses continuous intervals or ranges to
represent uncertain job data and aims to optimize worst-case
scheduling performances. Daniels and Kouvelis [15] generated
robust schedules on a single machine with interval job processing
times. Their objective was  to minimize the absolute deviation
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from the optimal total flow time in the worst-case scenario. They
developed a branch-and-bound exact algorithm and two surrogate
relaxation heuristics to find robust schedules. Yang and Yu [16]
addressed the same problem as Daniels and Kouvelis [15] but with a
discrete, finite set of processing time scenarios rather than interval
data. Kasperski [17] considered uncertain due dates and processing
times in a single machine scheduling problem with precedence
constraints. The uncertainty was described by interval data and the
performance measure is maximum lateness. The author developed
a polynomial time algorithm for constructing robust schedules with
a minimum worst-case scenario deviation. RO has also been applied
to solve other combinatorial optimization problems with uncertain
data. For instance, robust shortest path problems have received sig-
nificant attention from a number of researchers, such as Yu and
Yang [18], Karasan et al. [19], Montemanni et al. [20], and Lu et al.
[21]. Sungur et al. [22] proposed a robust optimization model for
the capacitated vehicle routing problem with demand uncertainty.
Averbakh and Berman [23,24] presented algorithms for the robust
p-center problem on a network with uncertain demand.

The research presented in this paper adopts the robustness
approach to solve the single machine scheduling problem (SMSP)
with both job processing times and SDSTs represented by inter-
val data. The objective is to obtain a robust job sequence with
minimum worst-case absolute deviation of the makespan from
an optimal solution. We  reformulate the robust single machine
scheduling problem (RSMSP) as a robust (asymmetric) traveling
salesman problem (RTSP) whereby a useful property can be uti-
lized to determine a worst-case scenario among a possibly infinite
number of scenarios. Because the RTSP problem is NP-hard [14],
in order to obtain acceptable solutions within a reasonable time
for problem instances with practical sizes, a generic algorithmic
framework is presented, together with a specific implementation
based on SA. Numerical experiments are conducted to demonstrate
the effectiveness and efficiency of the SA-based heuristic, to exam-
ine the tradeoff between robustness and optimality, and to explore
the impact of varying degrees of data uncertainty on the selected
performance measures.

The rest of this paper is structured as follows. In Section 2, fol-
lowing the definition of the RSMSP with uncertain processing times
and SDSTs, the reformulation of the RSMSP as the RTSP is presented.
Then, in Section 3, the proposed SA-based heuristic for solving the
RTSP is described. Numerical experiments and results are reported
in Section 4. Finally, Section 5 presents concluding remarks with
some recommendations for future research.

2. Problem statement and reformulation

2.1. The RSMSP with uncertain job processing times and SDSTs

Given a set N = {1, 2, . . .,  n} of jobs that require to be processed
on a single machine, the RSMSP aims to obtain a sequence of the
N jobs with minimum absolute deviation from optimal makespan
in a worst-case scenario. The nominal processing time of each job
j is pj (j = 1, 2, . . .,  n), and all jobs are available for processing at
the beginning (i.e., time zero) of the planning horizon. The nominal
SDST between jobs j and k is denoted as sjk (j, k = 1, 2, . . .,  n, and
j /= k), where sjk /= skj. Note that s0j, ∀j, represents the required
setup time when job j is placed in the first position of a sequence.

The uncertainty of processing times and SDSTs is described
using intervals or ranges. Specifically, each job j is associated with
an interval [plj, puj], 0 < plj ≤ puj, to represent the uncertainty of
its processing time. In addition, an interval [sljk, sujk], 0 < sljk ≤ sujk,
is used to capture the uncertainty of the SDST between two adja-
cent jobs j and k. Let pj(r) denote the processing time of job j and
sjk(r) the SDST between two jobs j and k in scenario r. Let R be

the set of possible scenarios. A scenario r ∈ R denotes a realization
of the job processing times and SDSTs, with pj(r) ∈ [plj, puj] ∀j and
sjk(r) ∈ [sljk, sujk] ∀j, k, and j /= k. Let C(�, r) denote the makespan of
sequence � under scenario r. The deviation between the makespan
of sequence � and that of optimal sequence �*(r) in scenario r is
defined as follows:

CDev(�, r) = C(�, r) − C(� ∗ (r), r), (1)

The robustness cost of � is defined as its maximum deviation
among all possible scenarios:

RCost(�) = maxr ∈ RCDev(�, r) (2)

The RSMSP intends to find the robust sequence �robust which has
the smallest (among all possible sequences) maximum (among all
possible scenarios) absolute deviation; that is

RCost(�robust) = min� ∈ ˝ RCost(�) = min� ∈ ˝maxr  ∈ RCDev(�, r), (3)

where � is the set of feasible sequences. In this definition, the
robust sequence can be considered as a sequence that should
guarantee reasonably good performance (compared to the optimal
solution) under a set of realizations of job processing times and
SDSTs.

Based on the above definitions, the RSMSP under consideration
can be represented using the classical three-field notation scheme,
developed by Graham et al. [25], as (˛|ˇ|�) = (1|STsd, pj ∈ [plj, puj],
sjk ∈ [sljk, sujk]|RCost), where two  sub-fields (pj ∈ [plj, puj], sjk ∈ [sljk,
sujk]) are introduced in the  ̌ field and the objective function RCost
in the � field.

2.2. The robust traveling salesman problem

It was  shown that, for a given scenario r, the single machine
scheduling problem with SDSTs and the objective of minimizing the
makespan can be reformulated as an asymmetric TSP by introduc-
ing a dummy  job 0 representing the depot of a vehicle [26]. Let
G = (N, A) be a connected graph. N is the set consisting of depot
node 0 and n customer nodes, each of which corresponds to a job
in the single machine scheduling problem. A is the set of arcs (j, k)
connecting nodes j and k, ∀j, k ∈N and j /= k. An arc (j, k) denotes that
node j is visited immediately before node k (i.e., job j is scheduled
immediately before job k). The arc distance matrix of the corre-
sponding TSP in scenario r is given by D(r) = {djk(r), j, k = 0, . . .,  n},
where djk(r) is the distance between nodes j and k, which equals the
sum of the setup time between jobs j and k and the processing time
of job k; that is, djk(r) = sjk(r) + pk(r). Because pk(r) ∈ [plk, puk] and
sjk(r) ∈ [sljk, sujk], the uncertain link distance djk(r) is in the range
[dljk, dujk], where dljk = sljk + plk, dujk = sujk + puk, 0 < dljk ≤ dujk. Note
that djk(r) = 0, if k = 0 (the depot).

The TSP considers all the jobs as the nodes to be visited and
intends to find a Hamiltonian tour (a sequence) with the minimal
distance (the makespan) for the vehicle that departs from the depot
(job 0), services the n nodes (jobs) exactly once, and returns to the
depot. Let � be the set of feasible TSP tours of the TSP, and � be
a feasible tour (� ∈ �).  Let Z(�, r) denote the distance of tour � in
scenario r. The robust deviation of tour � in scenario r is defined
as the difference between the distance of tour � and that of the
optimal tour �*(r):

ZDev(�, r) = Z(�, r) − Z(� ∗ (r), r). (4)

The robustness cost of a tour � is its maximum robust deviation
among all possible scenarios:

RCost(�) = maxr ∈ RZDev(�, r) (5)



Download English Version:

https://daneshyari.com/en/article/495400

Download Persian Version:

https://daneshyari.com/article/495400

Daneshyari.com

https://daneshyari.com/en/article/495400
https://daneshyari.com/article/495400
https://daneshyari.com

