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a b s t r a c t

In the present paper, an adaptive parameter estimation algorithm applicable to linear systems with trans-
fer functions of arbitrary structure is proposed. The approach can be applied to a wide class of linear pro-
cesses, including non-linearly parameterized ones. The proposed method is applicable to fractional-order
systems, distributed-parameter and delayed systems, and other classes of systems described by irrational
transfer functions. In the first stage of the proposed procedure, values of the transfer function at specific
frequencies are pinpointed by means of the Recursive Least Square algorithm with forgetting factor. In
the second stage, the unknown parameters are found by numerically inverting complex non-linear rela-
tions linking them to the quantities estimated in the first stage. The inversion is performed by means of
an iterative, gradient-based scheme. The method is illustrated by several detailedly explained numerical
examples.

� 2017 Elsevier GmbH. All rights reserved.

1. Introduction

System identification is concerned with development of mathe-
matical models and estimation of the unknown parameters of
those models. A special class of identification techniques has the
remarkable ability to track parameter variations in time, i.e. to
learn process behavior from data. Such techniques are essential
part of adaptive control and signal processing, but are also becom-
ing increasingly popular in other fields, such are process monitor-
ing and fault detection.

Solution of any estimation problem consists of three steps. First,
one needs to select a family of potential models M. In typical engi-
neering applications, M is the set of all rational transfer functions
of certain order, or a set of state-space models in a particular form.
There are many other possibilities; for example, one can choose to
consider a set of specific fractional order transfer functions, or to
allow for even more complex model structure, as we do in the
sequel. In the second step, an experiment is performed in which
a particular input uðtÞ is applied to the system, and the response
yðtÞ is recorded. Finally, in the third step, a search is performed
in order to find a model in M whose response to the selected input
uðtÞ is in the highest agreement with the recorded data. Typically,
all models in M are parameterized (indexed) by a vector of
unknown quantities ĥ. The aim of identification is to find the ‘‘best”
value of ĥ, i.e. the one that minimizes the discrepancy measure

yðtÞ � ŷðt; ĥÞ
��� ���; ð1Þ

where ŷ is output of the model when excited with the same input
signal u as the process, and k � k is some suitably selected norm.
Consequences in choosing different types of norms in (1) are con-
sidered in [1]. Applicability of different methods for optimizing
(1) and estimating the vector of unknown parameters h depends
strongly on the structure of the model. When considering dynami-
cal systems described by rational transfer functions, it is always
possible to express ŷ as a linear mapping of the unknown parame-
ters ĥ. When, in addition, one selects the norm in (1) to be Euclidean
2-norm, i.e. sum of squared errors, the underlying optimization
problem is known as Least Squares (LS). The solution is obtained
by solving the well-known system of ‘‘normal equations”, and it
can even be found in closed form by means of the Penrose-Moore
pseudo inverse. The solution can also be obtained recursively, by
the so called Recursive Least Squares (RLS) algorithm, and its var-
ious modification. Perhaps the best-known one is the celebrated
Kalman Filter (KF) [2], which is arguably the most widely used
adaptive estimation algorithm today. In depth discussion regarding
adaptive estimation techniques, their properties, implementation
and modifications can be found in [3,4].

Unfortunately, LS, RLS and KF are not, in general, applicable
when one wishes to identify various parameters of irrational trans-
fer functions. Many mathematical models found in recent litera-
ture are inherently non-rational. Fractional-order models, for
example, are found to be superior to integer-order ones in a variety
of applications [5–8]. Distributed parameter models are another
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prototypical example. They are typically described using partial dif-
ferential equationswith a variety of associated boundary conditions
[9,10], leading to a plethora of highly non-rational transfer func-
tions, [10,11]. Most industrial processes are also characterized by
transport and communication delays [12,13], which can sometimes
fluctuate. Processes exhibiting long ‘‘dead time”, especially if it is
changing or uncertain, are notoriously difficult to control [14]. By
interconnecting several delayed processes, complex irrational
models of retarded type are obtained [15].

If a process model under consideration is described by a non-
rational transfer function, so that its response cannot be linearly
parameterized, it is not straightforward to solve the underlying
optimization problem. This is mainly because the criteria (1) is
no longer convex. Indeed, as it will be demonstrated in the sequel,
the criteria can exhibit several global optima, leading to non-
uniqueness of the solution. In fact, a fundamental result estab-
lished by Ljung [16] is that global optimal solution to the identifica-
tion problem is possible only when the underlying parameterization is
intrinsically linear, i.e. when the transfer functions under considera-
tion are completely rational. In the case of off-line, non-adaptive
identification it is possible to solve the underlying optimization
problem by a suitable non-linear programming algorithm [17,1],
or even some modern, global optimization technique such as
Genetic Algorithm (GA), or Particle Swarm Optimization (PSO)
[18,19]. The above-mentioned procedures are, however, computa-
tionally expensive and are not well suited for on-line applications.
Several specific methods have been reported for parameter estima-
tion in dynamical systems with particular model structure. For
example, various identification techniques targeting fractional-
order models have recently emerged. The majority of existing iden-
tification methods consider a known commensurate system order
and then applies conventional techniques for estimation of the
remaining parameters. In this context, gradient method has been
utilized in [20,21], Least Square in [22–24], while [25] reports uti-
lization of modulating functions. Complete identification of frac-
tional order models is discussed in [26,27]. A detailed discussion
of parameter estimation techniques targeting distributed parame-
ter systems can be found in [28,29], while an example of delay esti-
mation technique was investigated in [30]. However, none of the
proposed schemes are general and all focus on models of a partic-
ular structure. To the best knowledge of the authors there is no
reported procedure capable of adaptively estimating parameters of lin-
ear models regardless their structure, and on the manner in which they
are influenced by the unknown parameters.

Motivated by these observations, the aim of this paper is to
propose a solution to adaptive on-line parameter estimation
problem applicable to linear systems with transfer functions of
arbitrary structure: rational, fractional, distributed, etc. A novel
method based on a two-stage identification (optimization) pro-
cess is proposed. In the first stage, values of the transfer func-
tion (real and imaginary part, or equivalently amplitude and
phase) at specific frequencies are pinpointed. This is a convex
optimization problem which can be effectively solved by con-
ventional adaptive techniques, including the Recursive Least
Square algorithm with forgetting factor (FF-RLS). In the second
stage, the unknown parameters are found by inverting complex
relation linking them to the previously identified transfer func-
tion values. In rare occasions, this inversion can be made explic-
itly. However, in most cases the solution must be found
numerically by means of a particularly chosen iterative proce-
dure. Within the present work we propose the gradient algo-
rithm [17], since it is simple and computationally cheap,
which makes it particularly suitable for on-line applications
and implementations in real-time environments. In spite of
being simple, we have found that gradient algorithm converges
with acceptable rate in all considered cases.

The paper is organized as follows: Section 2 contains problem
formulation and also explains the main idea underlying the pro-
posed approach. Detailed explanation of the proposed two-stage
identification process is given in Section 3. Numerical studies of
several carefully selected examples are presented in Section 4.
Concluding remarks are given in the final Section 5.

2. Problem formulation and the main idea

We consider a linear time-invariant (LTI) single-input single-
output (SISO) system described by transfer function Gðs; hÞ, where
s is the Laplace variable and h 2 Rq (q 2 N) is the vector of
unknown parameters. Let uðtÞ and yðtÞ be the input and output sig-
nals, respectively, both of which are available. With slight abuse of
notation, we will use

yðtÞ ¼ Gðs; hÞuðtÞ ð2Þ
to denote that yðtÞ is the response of Gðs; hÞ to the input signal uðtÞ.
More precisely (2) should be interpreted as

yðtÞ ¼ gðt; hÞ � uðtÞ ¼
Z t

0
gðs; hÞuðt � sÞds ð3Þ

where gðt; hÞ ¼ L�1 Gðs; hÞf g, L�1 is the inverse Laplace Transform,
and � denotes convolution. Let us also introduce

ŷðt; ĥðtÞÞ ¼ Gðs; ĥðtÞÞuðtÞ ¼
Z t

0
gðs; ĥðtÞÞuðt � sÞds; ð4Þ

as the output of the process model assuming that the input is u, and
that the actual parameters were fixed to ĥðtÞ throughout the process
history. In the sequel, ‘‘hat” symbol (̂�) will always be used to
denoted estimated values, while the ‘‘tilde” symbol (~�) will denote
estimation errors, i.e. differences between actual and estimated
values.

Consider the following identification problem: Assuming that
the structure of Gðs; hÞ is known, but that h is unknown, find ĥ min-
imizing the estimation error

JðĥÞ ¼
XN
i¼1

yðti; hÞ � ŷðti; ĥÞ
� �2

ð5Þ

where ti are time instances in which outputs have been recorded.
We assume, without loss of generality, that the output sampling
has been uniform, i.e. that ti ¼ t0 þ ih, where t0 is the initial time
instant and h > 0 is the sampling interval.

As discussed in the Introduction, the problem of minimizing (5)
with respect to ĥ is usually not convex, and does not, in general,
have a unique solution. Furthermore, this is a principal difficulty,
since by [16] every identification problem having a unique global
optimizer must reduce to a linearly parametrized one. Therefore,
it is not that the proper algorithm is not yet found, such an algo-
rithm cannot exist at all. Consequently, any adaptive technique
may be usable only locally, provide that sufficiently good initial
estimates of h are available.

The main idea of our work is to extract as much information as
possible regarding the process behavior globally, and then to use
local techniques to pinpoint the exact values of the parameters.
We consider a re-parametrization h $ b, where b consists of real
and imaginary parts of the transfer function evaluated at a priori
chosen set of input frequencies. The new parameters can be iden-
tified globally, and the mapping form h to b is usually locally bijec-
tive and differentiable.

Therefore, we propose a hybrid, two-stage scheme. In the first
stage, b is identified using Recursive Least Square algorithm with
forgetting factor (FF-RLS). In the second stage, h is obtained by
inverting b ¼ bðhÞ. Since in most cases this inversion cannot be
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